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A B S T R A C T

Quantifying shrub biomass can assist in natural resource management decision making. Nonlinear mixed effect
models (NMEM) were developed to predict total aboveground biomass as well as biomass in leaves, 1-h, 10-h,
and 100 or more hour fuel classes for seven species of shrubs common to the northeastern California. Using
crown area as a predictor, an allometric (power) model was used as a base model. Coefficients varied by species,
component, and by a nested combination of these random effects.

The results showed that NMEM that used shrub species as random effect performed better than nonlinear
fixed effect models in estimating total and component biomass in shrub species used in this study. Additionally,
when fixed effect models were fitted by species, not all regression parameters were statistically significant at
0.05 level of significance. NMEM were able to account for within species variation very well. The largest var-
iation was observed in total biomass while the smallest variation was observed in the biomass in 100 or more
hour fuel class. The mean prediction bias and root mean square prediction errors for total shrub biomass was
0.0409 kg and 0.9249 kg respectively. While there were differences between the fixed effects models and mixed
effects models, the mixed effects models would be preferred to the fixed effect models for future studies in-
volving total biomass prediction for similar shrub species and regions.

1. Introduction

Shrubs are important drivers of forest ecosystem productivity and
diversity. Forest understory vegetation are ecologically important be-
cause shrubs, lichens, and mosses can have a direct effect on below-
ground processes such as decomposition, nutrient flow, and the accu-
mulation of soil nutrients (Nilsson and Wardle, 2005). A majority of the
studies concerning forest biomass assessment by the use of allometric
equations has focused solely on the estimation of tree biomass (Beedlow
et al., 2009). Although tree biomass is the principle sink of carbon se-
questration in forests, it is also necessary to account for shrub biomass,
as these woody plants play an active role in ecosystem productivity
(Beedlow et al., 2009). A more comprehensive assessment of total
biomass will provide land managers and researchers with reliable as-
sessments of site productivity, fuel loading, and treatment effects
(Návar et al., 2004).

There have been several studies involving the estimation of shrub
biomass for various aspects of forest management including fire risk
management (Botequim et al., 2015, Roussopoulos and Loomis, 1979,
Sağlam et al., 2008), carbon sequestration (Pasalodos-Tato et al., 2014),

ecological stresses or disturbances (Elzein et al., 2011), and wildlife
habitat assessment (Grigal and Ohmann, 1977). Shrub biomass has also
been estimated using airborne LiDAR in small forest stands (Estomell
et al., 2011) and by using satellite remote sensing data to quantify tree
and shrub biomass in natural forest stands (Roy and Ravan, 1996).

The primary objective of this study was to develop predictive
equations using NMEM for shrubs common to Lassen National Forest,
CA. Equations were developed for aboveground biomass of seven spe-
cies of shrubs using metrics that are easily obtained in the field (Huff
et al. 2017). In this study, model performance and different strategies
using NMEM were also examined. The random effect coefficients ob-
tained from this research may be applied to shrubs found in other na-
tional forests or for when the shrub species is unknown.

Mixed effects models have been used extensively in forestry and in
agricultural research. Gregoire and Schabenberger (1996) applied
NMEM to predict cumulative bole volume of standing trees. NMEM
have been used to incorporate topographic factors with aboveground
biomass of Simao pine (Pinus kesiya var. langbianensis) while utilizing
single and nested random effects (Ou, et al., 2016). Variable exponent
taper models were developed for three central Oregon tree species using
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NMEM (Garber and Maguire, 2003, Poudel et al. 2018). The use of
NMEM has also been found to improve the accuracy and precision of
height prediction strategies in Douglas-fir (Pseudotsuga menziesii [Mirb.]
Franco.) forests (Temesgen et al., 2008). Small numbers of groups (12
counties in Iowa) were successfully used as random effects in a linear
mixed effects model for the prediction of county crop areas using survey
and satellite data (Battese et al., 1988). NMEM are valuable tools used
for growth and yield modeling in forestry disciplines and the use of such
models proved to be efficient and reliable within the context of this
study.

This study provides equations that predict aboveground biomass for
the following seven species of shrubs: mountain whitethorn (Ceanothus
cordulatus [Kellogg]), snowbrush (Ceanothus velutinus [Dougl. ex
Hook.]), deerbrush (Ceanothus integerrimus [Hook. and Arn.]), bush
chinkapin (Castanopsis sempervirens [Kellogg]), greenleaf manzanita
(Arctostaphylos patula [Greene]), golden currant/gooseberry (Ribes spp.
[Pursh]), and serviceberry (Amalanchier alnifolia [Nutt.]). Ribes spp.
include combined observations of golden currant (Ribes aureum) and
Sierra gooseberry (Ribes roezlli). Predictions derived from this study
may be applied to forests in northeastern California where these shrub
species are present. Observations with crown area less than 5m2 were
used in the model fitting process.

2. Materials and methods

2.1. Study area

The study area is located in Lassen National Forest, CA (40°50′N,
121°00′W), which is managed by the United States Forest Service
(USFS). The map in Fig. 1 depicts the location of the study area. Ele-
vation ranges from 1700m to 2100m for where shrubs were sampled.
The annual precipitation varies from 584mm to 1092mm with a mean
of 1041mm. A majority of the precipitation comes in the form of
snowfall between the months of November to April. The mean annual
temperature is 7.2 °C, with a mean temperature of −6.7 °C in January
and a mean temperature of 26.7 °C in August. Soils are classified as
Typic Argixerolls and Typic Haploxerands, which were formed over
colluvium, glacial till, or glacial outwash. Blacks Mountain Experi-
mental Forest, located within Lassen National Forest, is classified as
Interior Ponderosa Pine forest cover type (SAF 237) covering 3715 ha
(9200 acres) and is the only forest cover type located on the Experi-
mental Forest (Eyre, 1980). Forest composition does vary within this
cover type as white fir (Abies concolor var. lowiana [Gord.] Lemm.) and
incense-cedar (Libocedrus decurrens Torr.) become more prevalent at
increasing elevations. Lower elevations of Blacks Mountain Experi-
mental Forest consist of poorly drained flats dominated by sagebrush
and grass (Adams et al., 2008). Common plant associations within
Lassen National Forest include the Jeffery pine (Pinus jefferyi [Grev. &
Balf.]) /white fir/greenleaf manzanita/snowbrush communities and the
California red fir (Abies magnifica [A. Murr.]) /white fir/bush chinkapin
communities (found in higher elevations) (USDA, 2011).

The historic fire return interval for white fir/greenleaf manzanita/
snowbrush plant association is between 8 and 20 years (USDA, 2011).
Fire size and intensity influence the presence of shrubs like greenleaf
manzanita and snowbrush in areas where these plant associations
occur. Greenleaf manzanita and snowbrush seeds may lay dormant in
the soil for hundreds of years before fire initiates germination. High
severity fires that burn the forest canopy and kill overstory trees allow
for shrub communities to thrive in the new openings (USDA, 2011). Fire
severity and intensity are important factors in disturbance, especially
concerning the establishment of shrubs like greenleaf manzanita, whose
seedlings thrive in large numbers during the spring of the postfire year.

2.2. Data

Sampling occurred over the summers of 2011–2013 and a total of

180 individual shrubs were sampled to fill a range of four height classes
(0.1–0.5m, 0.5–1.0m, 1.0–1.5 m, and 1.5–2.0m). A minimum of five
shrubs per species within each height class was desired. Crews de-
termined if the shrub was free to grow or not. Free to grow, for this
study, was defined as whether or not the shrub crown was encroached
by neighboring plants. Shrubs were only sampled if the crown dimen-
sions could be readily observed due to the difficulty in measuring such
dimensions without damaging the sample. If a tree or snag had fallen
across a shrub, it was not selected for sampling. Table 1 lists the shrub
species sampled by common and scientific name, abbreviation, and
total number of samples obtained for each shrub.

Shrubs were destructively sampled within the area of where the
Storrie Fire of 2000 occurred, but not exclusively. In some instances,
shrub species within the desired size classes were unable to be located,
so samples from Blacks Mountain and Swain Mountain Experimental
Forests (located within Lassen National Forest) were used. Ecological
knowledge and vegetation maps of the region were used to locate
shrubs within this area. Field crews used a random number table to
determine and set an arbitrary bearing and then walked that direction
until a shrub that had the desired specifications (species; height within
a specified height class) was located. Once a shrub with the desired
specifications was located, its location was noted using handheld GPS
devices, which allows for location precision to within 10 to 20 feet. A
measure of crown width (cm) long (a measure of the horizontal crown
width axis) and crown width short (a horizontal crown width perpen-
dicular to the crown width long measurement) were obtained. Three
measurements of height (cm) were then taken for the tallest, second,
and third tallest stems. Three measurements of the largest, second, and
third largest basal diameters (cm) were also obtained at 10 cm above-
ground and a count for the total number of stems was calculated. A total
of eleven measurements were taken on each individual shrub. Table 2
lists the measurements in the order they were obtained in the field
along with abbreviations and measurement precision.

Plant material was bagged by size class. Size classes used were
adopted from the National Fire Danger Rating (NFDR) fuel classifica-
tion system. Size classes include leaf (foliage), 1-h fuels (wood <
0.64 cm in diameter), 10-h fuels (wood 0.64–2.54 cm in diameter),
100-h fuels (wood 2.54 – 7.62 cm in diameter), and 1000-h fuels
(wood > 7.62 cm in diameter) (Bradshaw et al., 1983). Total biomass
is comprised of 1-h, 10-h, 100-h, 1000-h, and leaf biomass components
(kg). Wood and leaves were bagged by size class and labeled denoting
species, date, and size class of the material. Samples were stored in a
dry room until the fall, when oven drying of the samples occurred.

Plant material was oven dried at 80 °C until weight was stabilized
(generally 2–3 days). Weight of the leaves and 1-h biomass was pro-
cessed first. Oven-dry biomass (g) for leaf biomass, 1-h, 10-h, 100-h,
and 1000-h fuels were recorded. It should be noted that there was no
plant material that was greater than 22.4 cm in diameter and very little
of the recorded biomass fell into the 1000-h fuel class.

2.3. Data analysis

Data was organized into three separate categories: shrub measure-
ments obtained in the field, shrub field weights (weights of biomass size
classes obtained in the field (g)), and shrub lab weights (weights of
biomass size classes after oven drying). Serviceberry had the greatest
value for mean height (77.8 cm) with a minimum height of 10 cm and a
maximum height of 200 cm. Greenleaf manzanita possessed the largest
mean basal diameter (2.1 cm) with a minimum basal diameter of 0.5 cm
and a maximum basal diameter of 6.7 cm. Snowbrush had the greatest
mean value of crown area (1.3 m2) with a minimum crown area equal
to 0.1 m2 and a maximum crown area equal to 4.5m2. Mountain
whitethorn possessed the largest mean total biomass (1.8 kg) with
minimum and maximum weights equal to 0.1 kg and 21.7 kg, respec-
tively. Deer brush had the lowest mean total biomass (0.5 kg) with
minimum and maximum weights equal to 0.1 kg and 8.5 kg,
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respectively. Summary statistics for shrub height, crown area, and stem
diameter at 10 cm aboveground are shown in Table 3.

Crown area was considered as a predictor of shrub biomass due to
accurate results obtained in past studies involving the estimation of
shrub biomass (McGinnis et al., 2010, Zeng et al., 2010, Maraseni et al.,
2005). The calculation of crown area requires two perpendicular
measurements of crown width (crown width long (cwl, cm) and crown
width short (cws, cm)), both of which were acquired with field mea-
surements. Crown area (m2) in this study is defined as the area of a
vertical projection of the crown to a horizontal plane (Uzoh and Ritchie,
1996) and calculated as

= × ×ca cwl cws π
40,000 (1)

Observations that appeared to be outliers were examined closely to
determine if their removal from the analysis was warranted. It was
determined that there was no measurement or data recording error

Fig. 1. Map depicting the study area located in Lassen National Forest, CA. Map courtesy of Dr. Martin Ritchie, Pacific Southwest Research Station, U.S. Department
of Agriculture.

Table 1
Common and scientific names, abbreviations, and total number of shrub sam-
ples.

Species (common) Species (scientific) Abbreviation n

Serviceberry Amalanchier alnifolia AMAL 28
Greenleaf manzanita Arctostaphylos patula ARPA 32
Bush chinkapin Castanopsis sempervirens CASE 20
Mountain whitethorn Ceanothus cordulatus CECO 27
Deerbrush Ceanothus integerrimus CEIN 21
Snowbrush Ceanothus velutinus CEVE 26
Ribes spp. (currant and

gooseberry)
Ribes spp. RISP 26

Table 2
Description and order of the measurements obtained in the field for individual
shrubs.

Order Abbreviation Description Desired
Precision

1 CWL Horizontal crown width long axis
(cm)

1 cm

2 CWS Horizontal crown width
perpendicular to CWL (cm)

1 cm

3 HM Maximum vertical height (cm) 1 cm
4 H1 A representative vertical height (cm) 1 cm
5 H2 A representative vertical height (cm) 1 cm
6 H3 A representative vertical height (cm) 1 cm
7 ML Maximum stem length (cm) 1 cm
8 SC Stem count at 10 cm NA
9 D1 Basal diameter at 10 cm (largest) 0.01 cm
10 D2 Basal diameter at 10 cm (second

largest)
0.01 cm

11 D3 Basal diameter at 10 cm (third
largest)

0.01 cm
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involved in obtaining metrics for these shrubs. No observations were
removed.

Base model for total aboveground shrub biomass as well as biomass
in different fuel classes was in the form of Eq. (2).

= +y β ca ε( )i
β

ij0 1 (2)

where yi is total aboveground shrub biomass or biomass in different
fuel classes of the ith shrub, ca is the crown area calculated using Eq. (1),
β0 and β1 are regression parameters to be estimated from the data, and
εij is a normally distributed error term associated with the jth shrub
observation on the ith species. Note that, estimate of β1 is same for all
species but we obtain species specific parameters estimates for β0 using
species as an indicator variable.

Biomass equations fitted by species i.e. species-specific equations
are most common. One of the disadvantage of such an approach is the
lack of enough samples in each species. Assuming the species sampled
in this study represent a random sample of the population of all shrub
species, it is possible to fit mixed effects model with species as random
effect. Temesgen et al. (2008) described the methods for predicting the
response in the future dataset when mixed effects models are used and
suggested that prediction accuracy can be improved substantially when
subsample of response is available. Therefore, the fixed effect model
(Eq. (2)) was enhanced by adding species random effect and a nonlinear
mixed effects model (NMEM) was fit. Although species was not a result
of a random process in our particular data set, we assumed a random
process for the mixed-effect model. The general form of a NMEM for
single grouping, shrub species in this study, is defined as (after Pinheiro
and Bates, 2006):

= + = … = …Y f x ε i m j n(Φ , ) , 1, , 1, , ,ij ij ij ij i (3)

where m is the number of groups (species), ni is the number of shrub
observations on the ith species, Yij is the jth shrub observation on the ith
species, f is a general, real-valued, differentiable function of a group-
specific parameter vector Φij and a covariate vector xij, and εij is a
normally distributed, within group error term. Thus, the NMEM for this
study was in the following form:

= + +y β b ca ε( )( )ij
β

ij0 0 1 (4)

where yij is equal to the jth shrub observation on the ith species, β0 is
a p-vector of fixed population parameters, bij is a vector of jth shrub
observations on the ith species or component level random effects, and
εij is a normally distributed error term associated with the jth shrub
observation on the ith species.The parameter vector varies from group
to group and is defined as:

= + ∼A β B b b N ψΦ , (0, )ij ij ij i i (5)

where β is a r x p vector of fixed effects, and bi is a r x q vector of
random effects associated with the ith species variance covariance
matrix ψ. Aij and Bij are design matrices of size r x 1 for the fixed and
random effects. It is assumed that observations corresponding to dif-
ferent groups are independent and that the within group errors εij are
independently distributed as ∼ε N σ(0, )ij

2 and independent of bi
(Pinheiro and Bates, 2006). A power variance function defined as

∼Var ε σ v( ) | |ij ij
δ2 2 was specified in the model to account for the het-

erogeneity of error variance. Here, εi is the model residual, σ2 is the
residual sum of squares, =υi ca

1
2 is the weighting variable. Starting

values for the parameters of NMEM were obtained by fitting a linear

Table 3
Summary statistics used for data analysis.

Species Variable Minimum Maximum Mean Std Dev Variable Minimum Maximum Mean Std Dev

Serviceberry Kt 0.008 5.08 1.09 1.57 Height (cm) 10.00 200.00 77.79 61.83
(kg) K1 0.004 1.44 0.34 0.45
n= 28 K2 0.000 2.47 0.56 0.84 Crown area (m2) 0.05 2.51 0.81 0.76

K3 0.000 0.59 0.71 0.15
KL 0.002 0.39 0.09 0.11 Diameter (cm) 0.39 3.47 1.62 0.99

Manzanita Kt 0.080 3.92 1.09 1.24 Height (cm) 19.00 190.00 77.13 39.32
(kg) K1 0.004 0.62 0.20 0.20
n= 32 K2 0.000 1.99 0.42 0.51 Crown area (m2) 0.02 2.78 0.91 0.84

K3 0.000 1.79 0.21 0.43
KL 0.004 0.97 0.26 0.28 Diameter (cm) 0.54 6.71 2.11 1.45

Chinkapin Kt 0.023 4.27 0.87 1.15 Height (cm) 19.00 105.00 63.00 24.31
(kg) K1 0.007 1.21 0.22 0.31
n= 20 K2 0.000 1.96 0.32 0.48 Crown area (m2) 0.05 2.83 0.87 0.81

K3 0.000 0.56 0.09 0.18
KL 0.012 0.82 0.24 0.27 Diameter (cm) 0.45 3.91 1.82 1.02

Whitethorn Kt 0.003 21.66 1.75 4.41 Height (cm) 6.00 193.00 52.08 41.38
(kg) K1 0.001 2.76 0.49 0.76
n= 27 K2 0.000 6.34 0.56 1.35 Crown area (m2) 0.04 4.09 1.28 1.20

K3 0.000 8.86 0.41 1.76
KL 0.002 1.88 0.18 0.38 Diameter (cm) 0.26 8.88 1.86 1.74

Deerbrush Kt 0.012 3.65 0.48 0.84 Height (cm) 31.00 122.00 64.71 28.03
(kg) K1 0.008 2.01 0.23 0.44
n= 21 K2 0.000 0.93 0.15 0.24 Crown area (m2) 0.13 4.07 1.13 0.98

K3 0.000 0.10 0.01 0.03
KL 0.002 0.70 0.09 0.16 Diameter (cm) 0.49 2.60 1.20 0.61

Snowbrush Kt 0.013 8.72 1.37 1.90 Height (cm) 13.00 194.00 64.46 38.76
(kg) K1 0.006 2.00 0.15 0.47
n= 26 K2 0.000 3.72 0.78 0.80 Crown area (m2) 0.05 4.49 1.34 1.22

K3 0.000 0.78 0.15 0.24
KL 0.006 1.84 0.33 0.41 Diameter (cm) 0.52 4.19 1.87 0.94

Ribes spp. Kt 0.003 8.46 0.85 1.87 Height (cm) 12.00 159.00 51.81 34.88
(kg) K1 0.002 2.08 0.25 0.46
n= 26 K2 0.000 3.16 0.34 0.79 Crown area (m2) 0.03 3.99 0.92 1.04

K3 0.000 0.41 0.04 0.09
KL 0.001 2.23 0.17 0.05 Diameter (cm) 0.09 3.46 1.17 0.84

S. Huff et al. Forest Ecology and Management 424 (2018) 154–163

157



mixed effects model. The heteroscedasticity in the fixed effect model
was also accounted for by fitting Eq. (2) with generalized nonlinear
least squares and specifying the same power variance function.Results
obtained from model fitting were evaluated using root mean square
prediction error (RMSPE), prediction bias, and the Bayesian informa-
tion criterion (BIC):

̂∑= −
=

n
Y YRMSPE 1 ( ) ,

i

n

i i
1

2

(6)

where Yi is the observed biomass for the ith shrub, ̂Yi is the predicted,
unweighted biomass of the ith shrub, and n is the sample size. RMSPE is
a measure of difference between values predicted by a model and the
values actually observed from the environment that it is being modeled
from after cross validation has been performed.

In statistics, bias is referred to as the difference between an esti-
mator’s expected value and the true value of the unknown parameter of
interest. In the context of this study, bias is defined as the mean dif-
ference between the measured value and the predicted value of the
variable of interest as in Poudel and Temesgen (2015). Leave one out
cross validation was performed in order to evaluate prediction errors
(RMSPE and bias). All statistical analyses were performed in R 3.4.3 (R
Core Team, 2017).

3. Results

3.1. Total aboveground shrub biomass

Several allometric models were assessed for trends in the goodness
of fit measures they produced. Table 4 depicts statistical summaries
obtained from fitting fixed and mixed effects nonlinear models by
maximum likelihood using the nlme function in R library nlme (Pinhero
et al. 2018). The standard deviation of the random effect was 0.28937
and within group residual standard deviation associated with species
was 0.57432. All regression coefficients were statistically significant at
the 5% level of significance (p-value < 0.05).

The goodness of fit statistic (BIC) was obtained for both fixed effect
and mixed effects models used to estimate total aboveground biomass.
Heteroscedasticity present within the residuals was addressed by ap-
plying a weighted variance proportional to the absolute value of the
predictor (crown area) raised to a constant power. The mixed effects
model with species as random effect had a BIC value of 68.82 compared
to the BIC value of 73.50 obtained from the fixed effect model in-
dicating that the mixed effects model should be preferred to the fixed
effect model.

Random effects varied by species and is shown in Fig. 2, where
random effect coefficients are plotted by species. Species specific
(mixed effects) and population average (fixed effect) predictions of total
aboveground shrub biomass are shown in Fig. 3. It is evident that the
mixed effects predictions follow the observed values more closely than
the fixed effect predictions. This difference is more obvious for Deer-
brush whereas the predictions are almost identical for Snowbrush.
Residual analysis did not show substantial problem with the model fit.
The standardized residual for one plant was relatively higher than
others (Fig. 4) but the values of predictors and response were within
their respective distribution (total biomass of 3.03 kg and crown area of
0.69 m2) hence were not removed from the fitting dataset. Likelihood
ratio test indicated that the additional random effect associated with
parameter β1 was not necessary ( = − =χ 2.41,p value 0.30(1)

2 ).

3.2. Biomass in leaves and different fuel classes

There were only 7 shrubs with biomass in 1000 h fuel class and only
71 shrubs with biomass in 100 h fuel class (Fig. 5). Therefore, these two
components were combined to form a fuel class 100 or more hour
(100+ hour fuel class). Table 5 provides the parameters and their
standard errors obtained from nonlinear mixed effects model for bio-
mass in leaves and different fuel classes. All fixed effects parameters for
all models were statistically significant at 0.05 level of significance.
Estimate of the standard deviation of species random effect was close to
zero (0.00003) for biomass in 100+ hour fuel class. Generally, variance
of biomass is expected to increase with increasing diameter – the cri-
terion used in fuel class determination. Thus, we believe that the
smaller standard deviation of random coefficient in 100+ hour class
could be due to the smaller sample size per species in this fuel class.
Random effect coefficient was the most variable for model for 10 h fuel
class (standard deviation 0.1382).

Fig. 6 depicts fitted values versus standardized residuals for dif-
ferent component models. These plots suggest reasonable fits for all the
components with no obvious trends present in the residuals. The plots
show that the NMEM is accounting for variability between species and
most biomass components adequately. Higher variability in the stan-
dardized residuals for which the fitted values were less than 0.5 kg
except for 100+ hour fuel class (Fig. 6). Other weighting options could
be implemented, however, given the allometric relationships existing
within these shrubs, a certain amount of heteroscedasticity may always
be present.

3.3. Prediction error and variance

RMSPE and mean prediction bias obtained from leave-one-out cross
validation are shown in Table 6. The leave-one-out cross validation
RMSPE obtained from the weighted nonlinear mixed effects model for
total aboveground shrub biomass was equal to 0.9249 kg (94.7 percent
of mean shrub biomass) and mean prediction bias was equal to
0.0409 kg (4.2 percent of mean). RMSPE (as percent of mean) was
highest for the 100+hour fuel class whereas the bias was highest for
the leaves. Interestingly, the cross-validated mean prediction bias was
smallest for 100+ hour fuel class.

4. Discussion

Nonlinear mixed effects models are important tools used in growth
and yield modeling. These models account the varying degrees of
hierarchy within data and can provide species specific, individual
predictions (Temesgen et al. 2008, Ou et al., 2016). NMEM also allow
the modeler to account for several sources of heterogeneity and cor-
relation that is present within the data (Hall and Clutter, 2004). These
benefits make NMEM an attractive option for those interested in bio-
mass estimation.

NMEM contain two standard approaches in which variation in the

Table 4
Statistical summaries resulting from the fitting of fixed and mixed effects
nonlinear models using species as random effects. Standard deviation of species
random effect was 0.28937.

Species Fixed effect model Mixed effects model
Parameter Estimate (SE) Parameter Estimate (SE)

β0 β1 β0 β1 b0

AMAL 0.95827
(0.11306)

1.39443
(0.04207)

0.74705
(0.12009)

1.38709
(0.04280)

0.18270

ARPA 1.26228
(0.11010)

1.39443
(0.04207)

0.74705
(0.12009)

1.38709
(0.04280)

0.45089

CASE 0.94391
(0.13446)

1.39443
(0.04207)

0.74705
(0.12009)

1.38709
(0.04280)

0.15833

CECO 0.50206
(0.11789)

1.39443
(0.04207)

0.74705
(0.12009)

1.38709
(0.04280)

−0.21138

CEIN 0.26588
(0.12590)

1.39443
(0.04207)

0.74705
(0.12009)

1.38709
(0.04280)

−0.40579

CEVE 0.76173
(0.11352)

1.39443
(0.04207)

0.74705
(0.12009)

1.38709
(0.04280)

0.01106

RISP 0.53625
(0.11410)

1.39443
(0.04207)

0.74705
(0.12009)

1.38709
(0.04280)

−0.18581
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Fig. 2. Dotplot of random effect by shrub species obtained from fitting nonlinear mixed effects model. Species are AMAL= Serviceberry; ARPA=Greenleaf
manzanita; CASE=Bush chinkapin; CECO=Mountain whitethorn; CEIN=Deerbrush; CEVE= Snowbrush; and RISP=Ribes spp.

Fig. 3. Predicted total aboveground shrub biomass versus crown area for the fixed and mixed effects nonlinear regression models. Black dots are the observed values
of total aboveground shrub biomass. Species are AMAL= Serviceberry; ARPA=Greenleaf manzanita; CASE=Bush chinkapin; CECO=Mountain whitethorn;
CEIN=Deerbrush; CEVE= Snowbrush; and RISP=Ribes spp.
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unit effect is modeled: fixed and random effects. A drawback of fixed
effects models is that they require the estimation of a parameter for
each unit, which is the coefficient on the unit dummy variable (Clark
and Linzer, 2012). Random effects specification models some para-
meters as arising from a distribution with a finite and estimable var-
iance, which was beneficial in determining variation between shrub
species. Random effects models do not involve the estimation of a set of
dummy variables, but instead use the mean and standard deviation of
the distribution of the unit effects (Clark and Linzer, 2012). The units in
the dataset also do not have to have been drawn from a larger, normally
distributed population to assume a random effects specification
(Greene, 2008). A NMEM, in this setting, required fewer parameters to
estimate, which leaves room for improvement in the estimation and
also resulted in an efficient use of time.

There may be some confusion concerning treating species as random
effects. While it is true that treating species as a random effect when
there are large numbers of species is beneficial in a mixed model ana-
lysis, using species as a random effect in this setting would be useful for
applications outside of the study area, the Lassen National Forest, as

well as for regional application. The between-individual and within-
individual variability estimated by NMEM in this study performed
better than the fixed effects model.

There was some degree of variation present between random effect
parameters. For example, the greatest difference between random ef-
fects could be found in the total and 10 h fuel class. There is little
variation between species in the 100+hour fuel class as indicated by
the near-zero standard deviation of the random effect parameter. Fig. 3
shows that there is little to no difference in estimates from fixed and
mixed effects models. In other words, a population average model is
reasonable in the case of snowbrush. The largest difference in regres-
sion curves was observed in Deerbrush which is usually smaller in
height compared to other shrubs, like serviceberry or Greenleaf man-
zanita.

There may be instances where it may be unclear as to which coef-
ficients should be used because the random and fixed effect coefficients
are similar. The modeler should examine each of the random effects for
b0 and compare them to the fixed effects coefficients and confidence
intervals obtained from the model fit. Random effects should only be

Fig. 4. Fitted values versus standardized residuals obtained by fitting nonlinear mixed effects model to predict total aboveground shrub biomass.

Fig. 5. Shrubs with zero and non-zero biomass in 100 and 1000 h fuel classes. There were only 7 and 71 shrubs with biomass in 1000 and 100 h fuel classes
respectively.
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used if there is not a significant difference between the fixed and
random effect coefficients. A significant difference indicates that bias is
present within the random effect fit estimate and that the fixed effects
coefficients should be used instead (Clark and Linzer, 2015). A tradeoff
between fixed and random effects is that the fixed effects will provide
unbiased estimates of β, but these estimates may possess large sample
to sample variability. The random effects, on the other hand, will in-
troduce bias in β estimates, but will also constrain the variance of these
estimates (Clark and Linzer, 2015). The random effect model approach
can lead to estimates that are closer, on average, to the true value of the
sample. The random effect coefficients obtained differed by species
with standard deviation of random effect coefficients ranging from
−0.40579 to 0.45089 for total aboveground shrub biomass and from
0.00003 to 0.13820 for different components.

Morphological changes that ensue among species, along with intra-
specific differences caused by climatic and other environmental factors,
require that separate equations be used to estimate biomass in varying
regions (Gregoire and Schabenberger, 1996). Shrub biomass accumu-
lation and growth may vary from site to site and from region to region.
Ou et al. (2016) found that adding topographic variables (elevation,
degree of slope, and aspect) as a fixed effect to a NMEM using height
and DBH as predictors improved values of AIC and BIC. Ou et al. (2016)
also found that aboveground biomass of individual Simao pine (Pinus
kesiya var. langbianensis) trees decreased with increasing elevation.
Seeing that plant associations, such as the Jeffery pine/white fir/
greenleaf manzanita/snowbrush and the California red fir/white fir/
bush chinkapin communities are found at varying elevations within
Lassen National Forest, obtaining measures of aspect, altitude, and
degree of slope could help to better understand variability in biomass
that may occur with changing topography.

Greenleaf manzanita, bush chinkapin, and deerbrush did not have
any 1000-h observations. Therefore, the 100 and 1000 h fuel classes
were combined to form a 100+hour fuel class. This allowed us to fit

mixed effects model for all shrub species. It should be noted that the
application of mixed effects model to new species require the user to
obtain a small sample those species. Additional details on how to obtain
random effect parameter for new “group” (species in our case) are
discussed in detail in Temesgen et al. (2008).

5. Conclusion

The use of a NMEM to quantify biomass across biomass components
was beneficial in explaining the between species differences in shrub
biomass common to northeastern California. The advantage of using a
NMEM over a fixed effect model in this setting was evident in the re-
duced number of parameters that needed to be estimated using a
NMEM, which saves time and allows room for improvements in the
estimation. NMEM are valuable tools that are frequently employed in
the field of forestry for growth and yield determination. The ability to
account for multiple sources of heteroscedasticity found in data by
means of random effects make NMEM an attractive option for biomass
estimation. Shrub species were used as the random effects of the NMEM
used to estimate total aboveground shrub biomass as well as the bio-
mass present in different fuel classes.

The random effects used in this study did a reasonable job in ac-
counting for larger observations of shrub biomass that were not able to
be fit by the fixed effect parameters alone. Standard deviation of the
random effect was the largest for total aboveground shrub biomass and
the smallest for the biomass in 100+ hour fuel class. The models fitted
in this study would be appropriate for modeling new shrubs that have
ecological characteristics and allometric features similar to shrubs
presented within this study.

Many forest management decisions are based on projections of
growth and yield and the use of NMEM allows for accurate future
predictions involving repeated measurements over time. NMEM were
able to account for within group variation better than fixed effects

Table 5
Parameter estimates and their standard errors obtained from fitting nonlinear mixed effects model for biomass in different fuel class treating species as random. φ is
the standard deviation of species random effect.

Component Species Parameter Estimate (SE)

b0 β0 β1 φ

Leaves AMAL −0.06482 0.15798 (0.03610) 1.12651 (0.03463) 0.09217
ARPA 0.13646 0.15798 (0.03610) 1.12651 (0.03463) 0.09217
CASE 0.11212 0.15798 (0.03610) 1.12651 (0.03463) 0.09217
CECO −0.07487 0.15798 (0.03610) 1.12651 (0.03463) 0.09217
CEIN −0.10196 0.15798 (0.03610) 1.12651 (0.03463) 0.09217
CEVE 0.04701 0.15798 (0.03610) 1.12651 (0.03463) 0.09217
RISP −0.05394 0.15798 (0.03610) 1.12651 (0.03463) 0.09217

1 h AMAL 0.09048 0.23910 (0.02396) 1.27016 (0.03829) 0.05367
ARPA 0.01993 0.23910 (0.02396) 1.27016 (0.03829) 0.05367
CASE −0.00157 0.23910 (0.02396) 1.27016 (0.03829) 0.05367
CECO 0.00615 0.23910 (0.02396) 1.27016 (0.03829) 0.05367
CEIN −0.07658 0.23910 (0.02396) 1.27016 (0.03829) 0.05367
CEVE −0.01641 0.23910 (0.02396) 1.27016 (0.03829) 0.05367
RISP −0.02202 0.23910 (0.02396) 1.27016 (0.03829) 0.05367

10 h AMAL 0.22501 0.27802 (0.05595) 1.57056 (0.06585) 0.13820
ARPA 0.13586 0.27802 (0.05595) 1.57056 (0.06585) 0.13820
CASE 0.02334 0.27802 (0.05595) 1.57056 (0.06585) 0.13820
CECO −0.11433 0.27802 (0.05595) 1.57056 (0.06585) 0.13820
CEIN −0.17247 0.27802 (0.05595) 1.57056 (0.06585) 0.13820
CEVE −0.02818 0.27802 (0.05595) 1.57056 (0.06585) 0.13820
RISP −0.06924 0.27802 (0.05595) 1.57056 (0.06585) 0.13820

⩾100 h AMAL 7.17E−09 0.17676 (0.04718) 0.92169 (0.27304) 0.00003
ARPA 2.39E−08 0.17676 (0.04718) 0.92169 (0.27304) 0.00003
CASE −2.45E−09 0.17676 (0.04718) 0.92169 (0.27304) 0.00003
CECO −4.69E−09 0.17676 (0.04718) 0.92169 (0.27304) 0.00003
CEIN −1.66E−08 0.17676 (0.04718) 0.92169 (0.27304) 0.00003
CEVE −3.82E−09 0.17676 (0.04718) 0.92169 (0.27304) 0.00003
RISP −3.54E−09 0.17676 (0.04718) 0.92169 (0.27304) 0.00003
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parameters were able to. When fixed effect models were fitted by spe-
cies, not all regression parameters were statistically significant.
Additionally, the NMEM were efficient and only a single model had to
be fitted. The applicability of NMEM with respect to hierarchical data
makes such models attractive and practical options in forest growth and
yield modeling.

This study confirms that while there is a great deal of variability
present in shrub biomass, there are several methods to consider that are
effective in accounting for such fluctuations. Although shrub metrics
may be time consuming and somewhat arduous to obtain in the field,
these woody plants must be accounted for when estimating total forest
biomass. Complete estimates of total forest biomass are necessary in
order to account for carbon sequestration and fuel loading in north-
eastern California forests. The findings resulting from this research will
also help in addressing uncertainty pertaining to the efficiency of
methods used to quantify component and total aboveground shrub
biomass.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.foreco.2018.04.043.
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