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Abstract. We examined the problem of selecting predictor variables for Nearest Neighbor (NN) imputation in remote

sensing based forest inventory. Eighty-three variables were calculated from Airborne Laser Scanning data and aerial

images, with responses being either dominant height or a set of five common stand attributes. Three different approaches

were compared with select predictor variables. Analyses were repeated with three different NN imputation methods using

a varying number of predictor variables. Results indicated that variable selection is justified, but it must be done properly.

The most accurate method to select predictors was to minimize error using Simulated Annealing. For a single response,

the most accurate imputation method was Random Forest proximity matrix-based imputation, whereas Most Similar

Neighbor was the most accurate for five responses. An optimization-based distance metric also worked well. We also

examined the degree to which different imputation methods are prone to overfitting as well as how to properly do cross-

validation in NN imputation.

Résumé. On a examiné la problématique de la sélection des variables prédictives dans la procédure d’imputation par la

méthode du plus proche voisin dans le contexte des inventaires forestiers réalisés par télédétection. Quatre-vingt trois

variables ont été calculées à partir de données SLA (scanneur laser aéroporté) et d’images aériennes, les réponses étant soit

la hauteur dominante ou un ensemble de cinq attributs courants de peuplement. Trois approches différentes ont été

comparées pour la sélection des variables prédictives. Les analyses ont été répétées à l’aide de trois méthodes différentes

d’imputation par le plus proche voisin en utilisant un nombre variable de variables prédictives. Les résultats ont montré que

la sélection variable est justifiée, mais que celle-ci doit être faite correctement. La méthode la plus précise pour sélectionner

les variables prédictives consistait à minimiser l’erreur à l’aide de la technique de recuit simulé. Pour une réponse unique, la

méthode d’imputation la plus précise était l’imputation basée sur la matrice de proximité de type « Random Forest » (forêt

aléatoire) alors que la méthode la plus précise pour les cinq réponses était la méthode d’imputation par le voisin le plus

semblable « Most Similar Neighbor ». Une mesure de distance basée sur une méthode d’optimisation a également donné de

bons résultats. On a aussi étudié la propension des différentes méthodes d’imputation au sur-ajustement de même que la

façon d’exécuter correctement une validation croisée dans le contexte de l’imputation par le plus proche voisin.

[Traduit par la Rédaction]

Introduction

Background

A large set of predictor variables can be calculated from

remote sensing data. This poses an issue of how to select the

optimal set of predictor variables to be included in a model.

Hocking (1976) asserted that improved computing capacity

made the problem of variable selection in linear regression

an active area of research in the late 70s. Although

computers today are tremendously more powerful than in

1976, the problem still exists. In addition, variable selection

is not just an issue in linear regression. The same problem

exists when selecting predictor variables to be included in

nonparametric models as well.

Stepwise variable selection methods are commonly used

to select variables in linear regression. Several stepwise

procedures and criteria (e.g., F-test, AIC, BIC, and Mallows’

Cp) have been proposed to select variables (Efroymson, 1960;

Venables and Ripley, 2002). Variable selection has been

addressed in several statistical methods including parametric

regression (Murtaugh, 2009), nonparametric regression

(Kulasekera, 2001), and additive models (Xue, 2009).

However, these procedures cannot be used in the Nearest

Neighbor (NN) imputation because the NN model is

fundamentally different. For instance, model accuracy in

training data does not automatically improve as more

predictor variables are added, and the definition of model

complexity is not straightforward. This study focuses on the
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selection of predictor variables to NN imputation to predict

continuous variables. There are not many studies that

address this issue, but there has been some research in

machine learning for selecting variables that can be used in

classification model (Guyon et al., 2004). A typical example

of a classification task where variable selection plays an

important role is that of gene selection from microarray data

(Guyon and Elisseeff, 2003). In these applications it is typical

that the number of candidate variables is considerably

higher (p��n problems) than the number of observations.

In remote sensing based forest inventories it is unusual to

have such a situation where p��n, yet many ideas used here

have been borrowed from the domain of machine learning.

Variable selection algorithms

Some variable selection algorithms for the NN imputation

method in remote sensing based forest inventory have

been published. Maltamo et al. (2006) used an algorithm

that first inserts transformations from continuous variables
and then deletes variables that do not significantly contribute

via stepwise optimization of the relative root mean square

error (RMSE). The optimization was conducted in terms of

one response variable. The algorithm was used with Most

Similar Neighbor (MSN) imputation (Moeur and Stage,

1995) to predict plot volume using aerial photographs, stand

register, and Airborne Laser Scanning (ALS) data. Packalén

and Maltamo (2007) used an algorithm that minimizes the
weighted average of relative RMSEs. The optimization was

conducted in terms of multiple response variables, and

weights of different responses were given by the user. In

this algorithm, predictors are inserted and deleted one by one

in random order until the error decreases; transformations

are also considered. Packalén et al. (2009) revised this

algorithm such that several predictor variables can be

inserted to the solution simultaneously, and the probability
of excluding variables was given as an argument. Hudak et al.

(2008) imputed 36 response variables including species-

specific basal areas, total basal areas, and tree densities using

topographic and ALS-based predictor variables. Variable

selection was based upon a measure of node impurity

obtained from Random Forest (RF) classification (Liaw

and Wiener, 2002). At each iteration a stepwise procedure

was used to iterate RF by discarding the least important
predictor. This process is analogous to backwards stepwise

multiple regression. Haapanen and Tuominen (2008) com-

pared two variable selection methods: genetic algorithm

(GA) and sequential forward selection. The objective was

to minimize the RMSE of plot volume. Predictor variables

were calculated from satellite images and aerial photographs.

GA-based variable selection provided the most accurate

results, sequential forward selection was the second most
accurate, and no variable selection was the least accurate.

Latifi et al. (2010) also used GA in variable selection to

predict plot volume and biomass using remote sensing data.

The GA search was implemented with a discretized response

variable, i.e., variable selection was formulated as a classifi-

cation task. They also selected predictor variables with

stepwise regression using backward elimination. The con-

clusion was that the variables selected by GA were found to
be superior in terms of prediction accuracy. Breidenbach et

al. (2010) used stepwise forward selection to select variables

to the tree crown level imputation of species-specific

volumes. A predictor variable was added if the averaged

RMSE over all response variables decreased by more than

1%. Breidenbach et al. concluded that operationally a

reasonable approach is to execute variable selection several

times and to select a model that best fulfills the objective of
the inventory.

In addition to variable selection algorithms, predictors

can be selected based on the correlation of X and Y or some

other metric that ranks predictors. Selection of variables is

often done before NN imputation, or the user may try

different variable combinations in actual imputation. An

assessment of different variable combinations is nevertheless

very time consuming, and it is often reasonable to replace it
with an automated routine.

Numerous distance metrics are used in NN imputation

and many comparisons of them have been published

recently (e.g., LeMay and Temesgen, 2005; Chirici et al.,

2008; Hudak et al., 2008; Breidenbach et al., 2010; Latifi

et al., 2010). The sudden influx of papers in this area was

probably due to the release of the R package ‘‘yaImpute’’

(Crookston and Finley, 2008). However, there have been no
studies in which different variable selection methods were

tested with different distance metrics.

Overfitting

The problem of overfitting is well known in statistic and

machine learning (Reunanen, 2003; Hastie et al., 2009).

Overfitting means that a model adjusts to specific random
features or noise of the training data but works poorly on

other datasets. Therefore, it is common in machine learning

to use k-fold cross validation or separate test dataset. Leave-

one-out cross-validation (LOOCV) is a special case of k-fold

cross validation in which k is equal to the number of

observations.

Cross-validation is commonly used in NN imputation

studies to evaluate the accuracy of prediction. The use of
LOOCV in NN imputation means that a distance metric

(e.g., weight matrix A in Equations (5�7)) is recalculated as

many times as there are observations in the dataset, i.e., one

observation is excluded (target observation), and a distance

metric is computed with other observations (reference

observations). Then the NN(s) are searched to find reference

observations for a target observation. In the NN imputation

studies it is common to ignore the repeated computation of
distance metric, instead, distance metric is computed only

once and then the NN(s) are searched by ignoring the target

observation itself. This may give misleading accuracies in

leave-one-out cross-validation.

Vol. 38, No. 5, October/octobre 2012

2 # 2012 CASI

Pagination not final/Pagination non finale

C
an

ad
ia

n 
Jo

ur
na

l o
f 

R
em

ot
e 

Se
ns

in
g 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ca

si
.c

a 
by

 U
ni

ve
rs

ity
 o

f 
E

as
te

rn
 F

in
la

nd
 o

n 
11

/1
5/

12
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



Objectives

The objective of this study was to examine how to select

predictor variables for NN imputation with one or more

continuous response variables. Analyses were done in the

context of remote sensing based inventory. Three different

approaches to select predictor variables were compared in

addition to the case with all predictor variables. Analyses
were repeated with three different NN imputation methods

using a varying number of predictor variables and one or

five response variables. Evaluation was carried out by means

of LOOCV. We also addressed an issue of unrealistic model

accuracy caused by potential overfitting.

Material

Study area and field data

The study area of about 10 000 ha is located in eastern

Finland in the municipality of Juuka. It is a typical managed

Finnish boreal forest area dominated by coniferous tree

species, namely Scots pine (Pinus sylvestris L.) and Norway

spruce (Picea abies (L.) Karst.). In this study, all the

deciduous tree species were lumped together; this species
group is hence referred to as deciduous (trees). Most of the

stands are fairly even aged and the data include both

naturally and artificially regenerated forests. Only one tree

species occurred in 12% of the plots, two in 34%, and three

in 54% (Figure 1).

The field data, consisting of 493 sample plots, were

collected during the summers of 2005 and 2006. Circular

sample plots with a radius of 9 m were placed in the young,

middle-aged, and mature forests. A Global Positioning

System with differential correction was used to determine

the position of the centre of each plot to an accuracy of

about 1 m (Trimble GeoXT with external antenna elevated

to 5 m, the accuracy of the positioning system was tested in

a comparable forest area, unpublished data). The diameter

at breast height (dbh), tree and storey class, and tree species

were recorded for all trees with dbh over 5 cm, and the

height of one sample tree of each species in each storey class

was measured on each plot. Näslund’s (1937) height model

with a random constant for each plot was fitted to the data

of measured heights and the model with predicted plot

effects was utilized to predict heights for trees without height

measurement. The volumes of individual trees were calcu-

lated as a function of dbh and predicted tree heights using

the species-specific models reported by Laasasenaho (1982).

Finally, tree volumes were summed up to plot level by tree

species. In addition, without considering tree species, the

diameter of the basal area median tree, stem number, and

dominant height were calculated for each plot. Dominant

height is defined here as the mean height of the 100 largest

dbh trees per hectare. The characteristics of plot attributes

are presented in Table 1.

Remote sensing data

ALS data were collected on 13 July 2005 using an Optech

ALTM 3100C laser scanning system. The test site was

measured from an altitude of 2000 m above ground level

(AGL) using a field of view of 30 degrees and a side overlap

of about 20%. This resulted in a swath width of approxi-

mately 1050 m and a nominal sampling density of about

0.6 measurements per square metre. The Optech ALTM

3100C laser scanner captures 4 range measurements for each

pulse, but in this study the measurements were reclassified to

represent first and last echoes. A digital terrain model

(DTM) was generated from the ALS data. First, laser points

were classified as ground and nonground points using the

method reported by Axelsson (2000) and then a raster DTM

with a pixel size of 2.5 m was interpolated by computing the

mean of the ground points within each raster cell. Values

for raster cells with no data were derived using Delaunay

triangulation. Finally, the raster DTM was subtracted from

Figure 1. The location of Juuka study area in Finland.

Table 1. Data from 493 sample plots.

Mean SD Min Max

V Pine 89.6 68.9 0.0 351.0

V Spruce 41.6 73.2 0.0 448.8

V Deciduous 15.4 28.9 0.0 230.3

N 1289 577 158 4127

DGM (cm) 18.2 5.2 8.6 38.9

HD (m) 16.9 3.4 8.2 26.2

Note: SD, standard deviation; V, volume (m3ha�1); N, stem number;

DGM, diameter of the basal area median tree; HD, dominant height.
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the ellipsoidal heights of laser points to scale the ALS data

to the AGL.

Aerial photographs were provided with a Vexcel

UltraCamD digital aerial camera on 1 September 2005.
The images were taken at an altitude of 3000 m above

ground level, which resulted a ground sample distance of

25 cm for the panchromatic band. There was plenty of

overlap in images with sidelap being 65% and endlap 80%.

The study area was covered by 260 images. Original color

(red, green, blue) and near-infrared (NIR) bands (Vexcel

refers to this processing level as Level-2) and pan-sharpened

images were utilized in the analyses. For each image, external
orientation was resolved by a bundle block adjustment as

explained in Packalén et al. (2009).

Predictor variables

Predictor variables were calculated at the plot level from

the ALS data and aerial images. Two types of variables were

calculated from the aerial images: textural and spectral
features. Texture features were calculated using orthorecti-

fied pan-sharpened images. The image having its nadir

closest to the sample plot was always used. Grey-level

co-occurrence matrices were constructed with varying re-

scaling classes and lag distances as an average of all

directions by bands for each plot, and texture metrics were

calculated as explained in Haralick et al. (1973). Finally,

12 texture variables were selected as was done in Packalén
and Maltamo (2007). Spectral features were calculated

by projecting ALS points to original color and NIR bands

(Level-2, no pan-sharpening) in the same manner as in

Packalén et al. (2009). To avoid ground pixels, only the first

echoes lying at least 0.5 m at AGL were considered. The

mean and maximum pixel values were fetched to each point

by iterating through all images where a point hit. A mean

value was then calculated by plot from the pointwise mean
and maximum values. In total, eight spectral variables were

computed from aerial images.

Several height and density variables were calculated from

the ALS data. All variables were computed separately with

first and last echoes. The first step was to calculate height

distributions for each sample plot using the heights of the

AGL data. All the laser hits were considered. Weighted

height percentiles 5, 10, 20, . . . , 80, 90, 95 (h5, . . . , h95) were
computed, and the corresponding densities (p5, . . . , p95)

were calculated for the respective percentiles. Height per-

centiles were calculated by summing the heights AGL. For

instance, the metric h50 is the height at which 50% of the

cumulative height has accumulated and p50 is the number of

laser hits below h50 divided by all the laser hits on the plot.

In addition, the mean and standard deviation of heights

AGL and the proportion of vegetation hits versus ground
hits using a threshold of 0.5 m were calculated. Fifty height

and density variables were produced this way. Also 14

metrics were calculated from the LiDAR intensity. First,

intensity was normalized for the range (Korpela et al.,

2010). Then, the following intensity variables were calcu-

lated separately for the first and last echoes: percentiles 10,

30, 50, 70, 90 and both the mean and standard deviation of

points 0.5 m AGL.
Eighty-three variables were calculated and used as candi-

date predictors in variable selection and NN imputation.

Variables similar to these have been used in many studies.

Therefore, it was outside the scope of this study to examine

the variables that turned out to be useful in further analyses.

This study focuses solely on constructing and selecting

subsets of variables that are useful to build good NN-based

predictors.

Response variables

Two responses were used in this study. One response is

dominant height, which was selected because it can be

predicted very accurately even with few predictor variables.
From this point onward, in the text dominant height as a

response is denoted as 1Y. The other response is a set of five

variables: volume of pine, spruce, and deciduous trees; stem

number; and diameter of the basal area median tree. This set

contains plot attributes that are substantially more difficult

to predict than dominant height. For instance, relative

RMSE is more than 10 times higher for the volume of

spruce or deciduous trees than for dominant height.
This set of five response variables is denoted by 5Y.

Methods

General description of the analyses

Three different approaches to select predictors for NN

imputation were evaluated. The first approach was to select
predictor variables before NN imputation using factor

loadings of canonical analysis (VSCC) (VS, variable selec-

tion). The second approach was a stepwise procedure in

which RF importance is used as a criterion (VSRF). The

third approach was to use optimization (VSSA) to minimize

RMSE-%. Variable selection was implemented such that the

number of predictors was fixed either to 3, 8, or 15, denoted

as 3X, 8X, and 15X, respectively. The performances of
variable selection methods were also examined by compar-

ing their prediction accuracies with those obtained using all

predictor variables (83X).

Variable selection was repeated with three different

distance metrics: MSN, RF proximity (NNRF), and opti-

mized weighted Euclidean (NNSA). Detailed descriptions of

these strategies for finding neighbors are found in the section

‘‘Nearest Neighbor imputation methods’’. The ‘‘reference
set’’ denotes a set of observations for which both response

and predictor variables are known. Similarly the ‘‘target set’’

refers to observations for which only the predictor variables

are known. In a cross validation, each observation in the

reference set is, in turn, a target observation.
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Predictor variables were standardized to have a mean of 0

and standard deviation of 1 because all distance metrics

were not scale invariant. The number of NN (k) was fixed to

five after preliminary experiments. The estimate for the
target observation i was calculated as:

ŷi ¼ k�1
Xk

j¼1

yi
j (1)

where yi
j; j ¼ 1; . . . ; k

n o
is the set of NN in the reference set

to the target observation i with respect to a distance metric.

In the case of 5Y, ŷi was a vector of five elements, i.e., all

response variables were imputed simultaneously using the
same set of NN.

The accuracy of a prediction was assessed by means of

RMSE-%. For the sake of simplicity, mean RMSE-% is

reported in the case of 5Y. Our focus was prediction

accuracy, not reproducing variance structure evident in the

observations. In the variable selection stage the distance

metric was only solved once, and then NNs were searched by

discarding the target observation itself as a reference
observation. This approach is called TRAINCV. After

variable selection the final accuracy assessment was made

by means of proper LOOCV, i.e., the distance metric was re-

evaluated in each iteration using reference observations only.

Possible overfitting was assessed by comparing TRAINCV

and LOOCV accuracies. Bias was also considered but not

reported in a comprehensive manner. Because VSSA,

NNSA, and NNRF are stochastic, there was some variation
between runs. The number of iterations and how the

stochasticity was taken into account is provided for each

algorithm in the respective method sections. However, for

the sake of simplicity variances between runs were not

considered in this study.

All routines were implemented by C/C��. Complicated

linear algebra computations were performed by the

LAPACK library (Anderson et al., 1999). RF was imple-
mented based on the code of Jaiantilal (2011), which is

based on the work of Liaw and Wiener (2002), which is an

R port (core by C) of original FORTRAN code by Breiman

and Cutler (2011).

Variable selection methods

Preselection by Factor Loadings (VSCC)

In VSCC predictor variables are selected before conduct-

ing NN imputation using canonical analysis. The purpose of

canonical correlation analysis is to determine the relation-

ship between a set of predictor variables (X) and a set of

response variables (Y). This is done by finding the linear

transformations Ur and Vr for the X and Y, which maximize

the correlation between them:

Ur ¼ arX and Vr ¼ crY (2)

where ar represents the canonical coefficients of the X

variables and lr the canonical coefficients of the Y variables

(Gittins, 1985). Ur and Vr are ordered in such a manner that

the canonical correlation is largest for r � 1, second largest

for r � 2, etc., and it is constrained that successively

extracted canonical variates must be uncorrelated, i.e.,
covðUp;UrÞ ¼ 0 and covðVp;VrÞ ¼ 0 when p � r.

For variable selection purposes, we calculated the correla-

tion between the first variate U1 and the original predictor

(X) variables. These correlations are called Factor Loadings

(FL) with respect to the first canonical variate. FL

summarizes how strongly the original predictor variables

contribute to the first canonical variate U1 FL is interpreted

here as an importance of predictor variables in terms of a
response and the most important (3, 8, or 15) predictor

variables were selected accordingly. In the case of one

response variable (1Y) this method is the same as using

Pearson’s correlation as an importance criterion (Rodgers

and Nicewander, 1988).

Stepwise selection by Random Forest importance (VSRF)

RF is an algorithm for regression and classification

developed by Leo Breiman (2001). It uses an ensemble of

trees and is a modification of bagging with trees. Bagging is

a technique for reducing the variance of an estimated

prediction function (Hastie et al., 2009). In bagging, the
idea is to fit the same regression (or classification) tree many

times to a bootstrapped version of the training data and to

obtain the prediction as an average. The correlation of pairs

of bagged trees limits the benefit that can be obtained by

averaging trees (see Equation (15.1) in Hastie et al. (2009)).

The essential idea in RF is greater variance reduction in

bagging by reducing the correlation between the trees

without increasing variance too much. This is achieved by
selecting a random subset of predictor variables at each split

when trees are grown. In the model training, the prediction

is an average of only those trees corresponding to bootstrap

samples in which the observation itself did not appear,

namely out-of-bag (OOB) samples. Detailed introduction to

trees, bagging, and RF is given by Hastie et al. (2009). In

this study actual RF predictions were not used; instead,

RF variable importances were used in variable selection, and

RF proximity matrices were used in NN imputation. In RF
runs, the number of trees was set to 500, the size of the

terminal nodes to 5, and the number of variables randomly

sampled at each split to 1/3 of the number of variables.

RF provides two variable importance measures. Here we

used the permutation importance measure which uses OOB

samples (Breiman 2001). First, a tree is grown and the

prediction accuracy on the OOB data is recorded.

In regression the accuracy is measured by the mean squared

error (Breiman and Cutler, 2011). The values for the jth
variable are then randomly permuted and the prediction

accuracy is recalculated. Finally, the decrease in accuracy

due to permutation is averaged over all trees. This is a

measure of the importance of jth predictor variable in the

RF (RFIM in Algorithm 1).
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VSRF is a backward stepwise variable selection algorithm

in which RF importance is used as a drop criterion.

It resembles the gene selection and classification algorithm

of microarray data by Dı́az-Uriarte and de Andrés (2006).
As in other selection procedures in this study, the desired

number of predictor variables, p, is given as an argument.

The core functionality of VSRF is presented in Algorithm 1.

In the case of several response variables (5Y) an average

of RF importance is taken over all responses. Because

RF is stochastic, VSRF was always repeated 50 times and

the predictors that occurred most often in the solutions

were selected. However, the variation between RF runs
was minor and repetition can be ignored in real world

application.

Algorithm 1. The stepwise variable selection algorithm

(VSRF) using RF importance as a drop criterion.

1. Initialize h p

2. while h B p

(a) For j � 1 to h:

Compute the importance criterion:

Mj ¼ R�1
PR

i¼1

RFIMðj; iÞ, where R is the number of

response variables and RFIMðj; iÞ returns the
RF importance of X variable j in terms of

response i.

(b) Drop the least important variable: Mj ¼ minðMÞ
(c) h h� 1

3. Output the selected X variables

Minimizing RMSE by Simulated Annealing (VSSA)

In VSSA the idea is to minimize RMSE-% by solving the

NN model repeatedly. The cost function (CF) to be

minimized is:

CF ¼ R�1
XR

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � ŷiÞ

2

n

s

�yi

(3)

where R is the number of response variables, yi is the vector

of observed values, ŷi is the vector of predicted values, and
�yi is the mean of predicted values in terms of the response i.

This formulation takes into account the multivariate

nature of response: it is the mean RMSE-% over all
response variables. Prediction ŷ is obtained by selected

NN imputation method using a subset X of all the available

predictors, XALL, thus the optimization problem can be

formulated as:

Minimize CFðNNðXÞ;YÞ subject to X 2 XALL (4)

The minimization was carried out by Simulated Anneal-

ing (SA) (Kirkpatrick et al., 1983). SA is a randomized local

search method (Aarts and Lenstra, 1997). It usually gives a

good approximation of the global optimum in a large search

space, but it is unlikely to find the optimum solution. SA has

analogy with annealing of a metal from which the name

comes. The central idea is to avoid local optima by

accepting probabilistically moves to worse solutions. This

is controlled by the parameter called temperature which

is gradually decreased according to cooling schedule.

The pseudo code for SA as implemented in this study is

given in Algorithm 2.

Algorithm 2. Simulated Annealing algorithm in VSSA.

1. t set initial temperature

s generate random solution

e CalculateCostðsÞ
ebest  e; sbest  s; k 0

2. while kBniter

(a) s0  PickNeighborSolution s; k
niter

� �

(b) e0  CalculateCostðs0Þ
(c) if ðexpðð�ðe0 � eÞÞ=tÞ> RandomðÞÞ

(i) e e0; s s0

(d) if ðe0BebestÞ
(i) ebest  e0; sbest  s0

(e) t CoolTemperature t; k
niter

� �

(f) k k � 1

3. return sbest

PickNeighborSolution generates a new neighbor solution

by altering the current solution. Following the idea of

Simulated Annealing, the magnitude of change in the

neighborhood is constantly decreasing while the execution

proceeds. In this study, initially two-thirds of the predictors

were changed simultaneously. The magnitude of change

decreases linearly such that when 80% of the iterations (niter)

have been completed, only one variable at a time is replaced

by another. The change in neighborhood is entirely random

when NN imputation is carried out by NNRF. In the case of

MSN, inverses of FLs are used as weight in the random

selection of variables to be replaced. The idea is that the

importance of a variable in a current solution should guide

how the neighborhood is modified for the next solution. In

the NNSA, a similar weighting scheme is used, but instead of

FLs variable weights of the current NNSA run are used.

Temperature controls the probability of accepting a worse

solution. It is linearly decreased until 80% of the iterations

have been done and then set to zero. Thus, during the last 20%

of the iterations worse solutions are no longer accepted.

Initial temperatures were set to 0.2 and 1.0 for 1Y and 5Y,

respectively. The cost was calculated with Equation (2) and

there were 500 iterations (niter) in every run.

The same optimization parameters were used with differ-

ent NN imputation methods. Optimization was repeated
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50 times with every combination of response, number of

predictors and NN method, and the solution that gave the

smallest cost was selected. Therefore, the number of

optimizations runs can also be considered a parameter of
optimization.

Nearest Neighbor imputation methods

NN methods use ‘‘similar’’ observations in p dimensional

input space M of predictor variables X to infer Y. The
problem of similarity can be defined as follows: given a set S

of points in M and a query point q � M, find the closest

point(s) in S to q. Closeness, or similarity, is defined by a

distance metric. A common way to define a distance metric

between points Xi and Xj is:

dðXi;XjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi;XjÞ

T
AðXi;XjÞ

q
(5)

where A is a square weight matrix, often required to be a

positive and semi-definite (Shen et al., 2009). Matrix A can

be determined either trivially (e.g., Euclidean distance), by

using only X variables (e.g., Mahalanobis distance), or by

using both X and Y (e.g., MSN distance based on canonical
analysis). The distance metric cannot always be defined by

equation 5, as in the case of NNRF. The strategies for

finding NN in this study are explained in the following

sections.

Most Similar Neighbor (MSN)

The MSN distance is obtained when the matrix A in

Equation (5) is determined via canonical correlation analysis

as follows (Moeur and Stage, 1995):

A ¼ jK2j T (6)

where j is the matrix of estimated coefficients for the X

variables found by canonical correlation analysis between X

and Y, and K is the diagonal matrix of canonical correla-

tions. Canonical variates used in Equation (6) were re-

stricted to those which explained 97% of the variance in

canonical correlation analysis.

Random Forest proximity matrix (NNRF)

In NNRF, the distance metric cannot be defined by

Equation (5) as it is derived from the RF proximity matrix.

The proximity matrix indicates which observations are

similar. Let N denote the number of reference and M the

number of target observations. Conceptually the size of the

proximity matrix is N �M where reference observations are

in rows and target observations are in columns (to be exact,
the size of proximity matrix is N � ðN þMÞ because

proximity is solved also for training data but this complica-

tion is not considered for now). First, a proximity matrix is

initialized to zero. After a tree is grown using reference

observations, all of the target observations are put down the

tree. If a target observation, i, ends up at the same terminal

node as a reference observation, j, the corresponding

element in the proximity matrix is increased by one. This

is repeated for every tree, and proximities are normalized by
dividing by the number of trees. In this study, the size of

terminal node was five; thus, for each target observation five

elements in the proximity matrix were increased by one. In

the case of several responses (5Y) the proximity matrix was

built separately for each response and summed together. The

actual distance metric is one minus the proportion of trees

where a target observation is in the same terminal node as a

reference observation. In the TRAINCV mode RF is
executed with training data only. In that case the proximity

matrix contains OOB proximities of training data (training

data � all observations).

NN imputation using RF proximities was first described

by Crookston and Finley (2008). The implementation in this

study followed their approach with some minor differences.

Because of stochastic nature of RF, the LOOCV accuracy

was calculated with a model that produced a median cost
among 50 NNRF runs.

Optimized distance metric (NNSA)

In NNSA A is the diagonal matrix:

A ¼ di;j

�� �� di;j ¼ 0 if i 6¼ j 8i; j 2 1; 2; . . . ; pf g (7)

where the values in the diagonal are determined by

optimization. This corresponds to learning a distance metric

in which the different axes (predictors) are given different

weights (Xing et al., 2002). A similar approach was used by

Franco-Lopez et al., (2001) and Haapanen and Tuominen

(2008), which minimized RMSE using the Nelder and Mead

(1965) simplex search, while Tomppo and Halme (2004)
used a GA. However, this type of metric is generally rare in

NN imputation literature.

In this study the values in the diagonal of A were searched

by minimizing the RMSE. In the case of several responses

(5Y) the mean RMSE was minimized. Minimization

was carried out by SA in a similar way as in VSSA.

The difference is that diagonal values of A are modified in

PickNeighborSolution instead of the subset of predictor
variables. Thus, here SA is used with a continuous solution

space, although usually it is used to solve combinatorial

optimization problems. Otherwise the algorithm follows the

SA as presented in Algorithm 2. Initially, the diagonal is set

to one corresponding to Euclidean distance. Diagonal

values are then altered by PickNeighborSolution as de-

scribed in Algorithm 3. The central idea is to decrease the

magnitude of change while the execution proceeds. It is
assumed that every predictor is meaningful (nonzero

weight); therefore, weight is restricted to 0.05 before scaling

the diagonal to have a mean of one. Initial temperatures

were set to 0.2 for 1Y and 1.0 for 5Y, and cooled as in VSSA.

The LOOCV accuracy was calculated with a model that
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produced a median cost among 50 NNSA runs because of

the stochasticity of NNSA.

Algorithm 3. PickNeighborSolution with continuous solu-
tion space in NNSA. Otherwise NNSA follows the principle

presented in Algorithm 2.

1. m1SetModifyProbability // here fixed to 0.5

2. g1SetMagnitude k
niter

� �
// decreases linearly from 2 to 1.1

3. for each w in Diag(A)

(a) r1Random(�1,1)

(b) if (rB(1�m))

(i) w1w�g // increase weight

else if (r�(1�m))

(i) w w
g

// decrease weight

4. Set w to 0.05 if it is below 0.05

5. Scale Diag(A) to have a mean of one.

Results

LOOCV accuracies

Accuracies obtained by LOOCV with respect to 1Y are

presented in Table 2. VSSA was the most accurate
variable selection method. Variables selected by VSRF

provided systematically less accurate predictions, but in

some cases the difference was minor. VSCC was clearly

the least accurate method to select variables. The most

accurate prediction of 6.97% was obtained by NNRF with

8X variables. In general, accuracies improved when the

number of predictor variables was increased, but with

VSSA this trend was not apparent. If variables were
selected by VSSA, already 3X provided about the same

accuracy as 15X. Accuracies obtained by VSSA were

always better, also with 3X, than what was achieved by

using all 83X variables. This indicates that predictor

variables that have predictive power for dominant height

are correlated, and VSSA was capable of selecting a subset

of three variables that really cannot be improved any

more by adding more variables. The most accurate NN

imputation method in terms of 1Y was NNRF. NNSA

was almost as accurate as NNRF; whereas, MSN was

always clearly the poorest choice.

Accuracies (mean RMSE-%) with respect to 5Y are

presented in Table 3. VSSA was clearly the most accurate

method to select variables to NN imputation when there

were five response variables. VSRF was the second best, but

it was already less accurate than an option where variable

selection is ignored entirely (83X). VSCC was distinctly the

least accurate variable selection method. Accuracies im-

proved considerably when the number of variables was

increased from 3X to 8X, but increasing the number of

variables from 8X to 15X did not improve the accuracy in

every case.

The smallest mean RMSE, 48.28%, was obtained with

MSN using VSSA and 8X (Table 3). MSN also provided the

second smallest RMSE at 48.40%. Hence, MSN seems to

work better with 5Y than with 1Y. The differences between

NN imputation methods were quite minor, especially with

VSSA and all 83X variables.

LOOCV vs. TRAINCV

The decrease in accuracy between TRAINCV and

LOOCV is summarized in Figure 2. Decrease was calculated

in a relative manner ([(RMSELOOCV�RMSETRAINCV)/

(RMSELOOCV)])�100. We use optimism as a synonym for

the decrease of accuracy: a decrease in accuracy means an

Table 2. RMSE-% for 1Y (dominant height) using LOOCV by variable selection method, number of predictor variables, and NN imputation

method.

VSCC VSRF VSSA All

NN method 3X 8X 15X 3X 8X 15X 3X 8X 15X 83X

MSN 9.16 8.67 8.66 8.68 8.41 8.73 7.80 7.72 8.00 8.41

NNRF 8.43 8.17 7.69 8.16 7.35 7.33 7.21 6.97 7.05 7.53

NNSA 8.36 8.09 7.42 7.96 7.55 7.23 7.26 7.23 7.21 7.56

Table 3. Mean of RMSE-% for 5Y (volume of pine, spruce, and deciduous trees, stem number, and diameter of the basal area median tree)

using LOOCV by variable selection method, number of predictor variables, and NN imputation method.

VSCC VSRF VSSA All

NN method 3X 8X 15X 3X 8X 15X 3X 8X 15X 83X

MSN 74.48 73.41 66.18 79.43 55.67 56.54 59.73 48.28 48.40 52.05

NNRF 77.03 76.70 72.88 71.02 54.71 53.23 59.54 49.42 48.97 53.02

NNSA 80.12 76.55 76.29 69.72 53.15 53.47 60.00 50.17 48.89 52.47
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increase in optimism. It indicates how overoptimistic train-

ing set error is compared with the generalization error.

There was a trend that the optimism increases when the

number of variables increases. This is a logical outcome, as it

is apparent that a more complex model is more prone to

overfitting (Hastie et al., 2009). However, in the case of

VSCC, 1Y, MSN had a reverse trend and optimism was

negative with 15X variables. Optimism varied between

�1.03% and 16.34%. The two highest optimisms were in

NNRF and MSN in the case of VSSA in terms of 1Y. There

was also a trend that optimism was higher in the case of 1Y

than in the case of 5Y. Variable selection by VSSA and the

use of all variables (83X) were more optimistic than VSCC

and VSRF.

There was not any clear trend in which the NN imputa-

tion method would be more prone to optimism. NNRF had

the highest optimism in VSSA, 1Y and 5Y. MSN clearly had

the lowest optimism in VSSA, 5Y, which is related to the

reason why MSN was the most accurate method in terms of

5Y. However, when variable selection was ignored and all the

variables were used in imputation, MSN had the highest

optimism also with respect to 5Y.
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Figure 2. Decrease in accuracy between TRAINCV and LOOCV by variable selection method, number of predictor

and response variables, and NN imputation method.
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BIAS

In the case of 1Y bias was negligible. Even the maximum

bias, obtained with MSN and 8X, was only 0.21%. In the

case of 5Y, bias increased when the number of predictor

variables was increased. Generally, NNRF was the least

biased imputation method but differences between methods

were small. Of the response variables, N was normally

slightly overestimated and DMG was underestimated. Some

response variables were clearly more biased than others; the

volume of deciduous trees seemed to be especially prone to

bias, which might be attributed to few plots of deciduous

trees over 25 m3 ha�1 (92 plots out of 493). A typical

example of bias (VSSA, 15X, LOOCV) in the case of 5Y

(separate for each response) by the NN imputation method

is shown in Table 4.

Discussion

Accuracies obtained by VSSA were better than what was

achieved by using all variables. However, in many cases the

use of all variables provided better accuracy than variables

selected by VSCC and VSRF. In the case of several

responses (5Y) the use of all variables (83X) always provided

better accuracy than what was obtained by variables selected

by VSCC or VSRF. Thus, the variable selection seems to be

well justified, but it must be done properly. VSSA was clearly

the best variable selection method, and variable selection

was in many cases more important than the NN imputation

method used. This study was conducted in a single test area

in boreal forests. An interesting question is to what extent

would our conclusions be generalized to the broader range

of forest types? We believe that our results are quite general

and not restricted to data we examined. However, we assert

that our comparison will lead to similar or follow-up studies

in broader range of forest conditions.

VSSA is computationally demanding because its cost (or

loss) function requires that the NN model be solved at each

iteration. This is an issue with all optimization approaches

in which RMSE or equivalent loss function is minimized.

RMSE is fundamentally the same as the squared error loss

used commonly for penalizing errors in regression. Unfor-

tunately, at least based on observations made in this study,

computationally less expensive methods such as VSCC and

VSRF are not as efficient as methods that minimize the

squared error loss by optimization (i.e., VSSA).

The number of predictor variables, p, was fixed in this

study to 3, 8, and 15. This design choice was made for

simplicity in variable selection algorithms and comparability

of methods using equally complex models. Another option

would be to treat p as an optimized parameter; this is viable

but computationally more demanding. Let’s think about the

case where p is a free parameter. We know that the LOOCV

accuracy does not improve as a function of model complex-

ity (here p) if cost is calculated using TRAINCV. Therefore,

it does not help to minimize RMSE of TRAINCV predic-

tions. There are two solutions to overcome this issue: cost is

calculated using proper cross-validation (LOOCV) or model

complexity is incorporated in the cost function. Using

LOOCV to calculate the cost would be computationally

very demanding, however, k-fold cross-validation (e.g.,

k � 5 or 10) could be used instead. Incorporating complex-

ity into model selection is a common practice in stepwise

regression. AIC and BIC are probably the most common

criteria of this type; however, they cannot be used in NN

imputation. Vapnik�Chervonenkis theory provides a general

measure of model complexity (VC dimension) but it has not

been used in this context (Vapnik, 1996).

This study focused on selecting subsets of variables that

are suitable to improve the accuracy of NN imputation. This

contrasts with the problem of finding or ranking all

potentially relevant variables (e.g., Guyon and Elisseeff,

2003). The RF variable importance score, for example, does

not measure the ‘‘prediction strength’’ of a predictor

variable when the variable is excluded and a model is

refitted without that particular variable (Hastie et al., 2009).

On the other hand, factor loadings used in VSCC may be

better suited for finding potentially relevant variables

instead of being used as a criterion in variable selection.

NNRF was the most accurate NN imputation method in

the case of one response variable (1Y). NNSA was nearly as

accurate as NNRF; whereas, MSN was clearly the least

accurate imputation method in every case against one

response. Against several response variables (5Y), however,

MSN was the most accurate imputation method with NNRF

and NNSA being slightly less accurate. NNRF was the least

biased imputation method but the differences were minor. In

general, bias was not a serious issue in this study.

An ideal NN imputation method would have an em-

bedded variable selection mechanism. In this study, VSSA

variable selection always improved the accuracy; thus, the

imputation methods examined in this study were not

optimal without explicit variable selection. NN imputation

method with an embedded variable selection mechanism

could be based on the discrete exclusion of variables

(basically as variable selection works in this study) or the

effect of unimportant variables approaching zero in a

continuous manner. The latter would be similar to the

idea of shrinkage methods in regression, such as ridge or

Lasso regression (e.g., Hastie et al., 2009). The number of

NN k was fixed here to 5. Alternatively, k could be treated as

an optimized parameter, likewise p discussed earlier.

Table 4. Bias-% obtained with VSSA, 15X and LOOCV by NN

imputation method.

NN method V Pine V Spruce V Decid N DGM

MSN �0.45 2.45 4.12 �0.18 0.40

NNRF 0.89 �1.95 �1.22 �1.02 0.99

NNSA 0.86 0.99 4.73 �1.09 1.56

Note: Negative bias means overestimation.
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The RF-based imputation (NNRF) has recently gained

popularity in remote sensing studies. Its distance metric is

based on RF proximities, which differs substantially from

most distance metrics. The RF proximity matrix is always

built for one response variable because there can only be one

response in RF. In NNRF with several response variables, a

proximity matrix is first built separately for each response,

and then these matrices are summed together to obtain a

final proximity matrix. This distance metric could be

considered artificial or just seemingly multivariate in terms

of several responses, although it seems to work well.

‘‘Generalization error’’ is an error rate when new ob-

servations are drawn from the joint distribution of the XY

data, a model f(X) is used to make a prediction and an error

is computed by a (loss) function LðY ; f ðX ÞÞ. In this study,

L computes RMSE. Note that in the generalization error,

the training set is fixed. Our ultimate goal is to approximate

the generalization error by LOOCV. However, according to

Hastie et al. (2009) cross-validation typically estimates the

‘‘expected prediction error’’. The expected prediction error is

an average generalization error over all training sets drawn

from the same joint distribution, i.e., the training set is not

fixed. Nevertheless, here we ignore this discrepancy and

assume that the generalization error is obtained by LOOCV.

In this study we used LOOCV to denote that a distance

metric is recalculated as many times as there are observa-

tions in the dataset, i.e., one observation is excluded (target

observation), and a distance metric is solved with other

observations (reference observations); whereas, TRAINCV

denotes that the distance metric is solved only once and then

searched for NN. The difference of TRAINCV and LOOCV

varies by distance metric. In the case of Euclidean distance

the result is almost the same. The difference originates from

different means and standard deviations used in standardi-

zation. In the case of Mahalanobis distance, the difference

originates from different covariance matrices and standar-

dization. In this study we used distance metrics in which

both predictors (X) and responses (Y) are employed. It is the

most prone setup to overfitting. Although in TRAINCV the

observation itself cannot belong to the set of its NN, it has a

positive effect on the search for NN because it is included to

the distance metric. Yet in many NN imputation studies

only TRAINCV error is reported. In this study, the

optimism was in many cases more than 10%. The

TRAINCV error rate cannot be used to rank different

methods because different methods typically adapt differ-

entially to the training data.

It would be interesting to make a comparison of a simple

Euclidean distance metric and the ones tested here. How-

ever, because the optimism originates from different sources

it would exaggerate the accuracy of Euclidean distance

metric. Reasonable comparison would require that LOOCV

is used in variable selection as well but for computational

reasons it was not possible.

In general, cross-validation should be applied to the entire

sequence of modeling steps. Here we selected variables using

TRAINCV and then validated the selected model by

LOOCV. Therefore, we have some ‘‘selection bias’’ in our

LOOCV accuracies. The misuse of cross-validation was

intentionally made for the sake of computational efficiency.
Performing variable selection repeatedly for each omitted

observation would be exceedingly demanding computation-

ally. k-fold cross-validation (e.g., k � 5 or 10) could be used

instead, but it also has drawbacks such as randomness

caused by the selection of samples to folds. But how

important is this misuse of cross-validation? The selection

bias is significant in genomic studies where p��n (Ambroise

and McLachan, 2002). In most use cases, like in this study,
p is less than n. Therefore, we do not believe that selection

bias is a very important factor here. The difference between

LOOCV and TRAINCV � called optimism in this study � is

a far more important factor than the selection bias.

Conclusions

The optimization-based VSSA was the most accurate

method to select predictors. It always provided better

accuracy than what was achieved by using all variables.

However, in many cases the use of all variables provided
better accuracy than pre-selection by factor loadings

(VSCC) or stepwise VSRF. This indicates that variable

selection is an important component of imputation, and

hence it must be done properly.

For a single response variable, NNRF was the most

accurate distance metric while MSN was the least accurate

metric. Thus, this study indicates that the MSN distance

metric is not the best choice for one response. For five
response variables, however, MSN was the most accurate

distance metric. The optimization-based NNSA worked

particularly well when the number of predictors was low.

We also demonstrated the difference between TRAINCV

and LOOCV procedures. Because of overfitting TRAINCV

may give accuracies that are too optimistic. Analysts should

be aware of this when conducting cross-validation.
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