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Abstract: Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity
tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using
negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor
(NN) imputation methods. The models were developed and fit to data collected by the Forest Inventory and Analysis pro-
gram of the US Forest Service in Washington, Oregon, and California. For predicting cavity tree and snag abundance per
stand, all three NB regression models performed better in terms of mean square prediction error than the NN imputation
methods. The most similar neighbor imputation, however, outperformed the NB regression models in predicting overall
cavity tree and snag abundance.

Résumé : Les données sur l’abondance des arbres creux et des chicots sont extrêmement variables et contiennent plusieurs
observations nulles. Nous prédisons l’abondance des arbres creux et des chicots à partir de variables facilement disponibles
dans les cartes du couvert forestier ou parmi les données obtenues par télédétection en utilisant des modèles de régression
binomiale négative (BN), BN à excès de zéros (ZINB) et BN tronquée à zéro (ZANB), ainsi que des méthodes d’impu-
tation par le plus proche voisin. Les modèles sont élaborés et ajustés aux données collectées par le programme d’analyse
et d’inventaire forestiers du U.S. Forest Service dans les États de Washington, de l’Oregon et de la Californie. Les trois
modèles de régression BN offraient une meilleure performance en terme d’erreur quadratique moyenne de prédiction que
les méthodes d’imputation par le plus proche voisin pour prédire l’abondance des arbres creux et des chicots par peuple-
ment. Cependant, l’imputation par le voisin le plus semblable donnait de meilleurs résultats que les modèles de régression
BN pour prédire l’abondance globale des arbres creux et des chicots.

[Traduit par la Rédaction]

Introduction

In the past decades, traditional timber-oriented forest man-
agement has broadened to commodity production while man-
aging forest resources in an ecologically sustainable manner
(Fan et al. 2004). Derived benefits often include managing
forests for wildlife, enhancing biodiversity, and protecting
water quality (Sustainable Forestry Initiative 2002).

Snags (standing dead trees) are a significant structural
component of many forest ecosystems (Harmon et al.
1986). They create nesting, foraging, and roosting habitat
for a variety of wildlife species that depend on snags and
large trees for survival and reproduction (Bate et al. 1999;
Russell et al. 2006; Wisdom and Bate 2008). Snags are im-
portant for the maintenance of biodiversity (Shorohova and
Tetioukhin 2004; Aakala et al. 2008), as many deadwood-
dependent organisms are confined to snags during their life
cycle (Nilsson et al. 2002). Snags also contribute to ecolog-
ical processes and decay dynamics (Ganey and Vojta 2005).
Episodic events (e.g., insect outbreaks, fire, snow- and wind-

caused stem breakage) create large quantities of snags.
Small-scale mortality caused, for example, by competition
or suppression continuously creates smaller quantities of
snags (Aakala et al. 2008).

Cavity trees contribute to diverse forest structure and
wildlife habitat (Temesgen et al. 2008). Cavity trees are
live trees or snags containing a hollow that provides wildlife
species with shelter from the elements and protection from
disturbance by predators and competitors (Carey 1983).
Cavity trees provide many birds, mammals, reptiles, and
amphibians with habitat for nesting, roosting, loafing, hiber-
nating, and eating. They also provide escape cover and food
storage locations (Carey 1983; Jensen et al. 2002).

Cavity-nesting birds and other wildlife species depend on
an adequate and continuous supply of cavity trees and snags
(Fan et al. 2003a). Timber harvest and human access (e.g.,
characterized by distance to nearest town or road) can have
substantial effects on snag density (Wisdom and Bate 2008).
Because cavity trees and snags are removed under an inten-
sive timber management regime, the availability of cavity
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trees is a concern in resource management and conservation
(Fan et al. 2004). Maintaining snags in suitable abundance
and stages of decay is critical to the preservation of biodi-
versity and the sustained functioning of forest ecosystems
(DeLong et al. 2008).

Managers need to understand the nature of the cavity re-
source and the patterns of cavity tree abundance to effec-
tively manage forest resources for ensuring viable
populations of cavity-using wildlife (Carey 1983). Regional
summaries of current deadwood amounts, including snags
and down woody debris, are needed for broad-scale assess-
ment of wildlife habitat (Ohmann and Waddell 2002). Snag
abundance is frequently used to incorporate habitat require-
ments of cavity-nesting wildlife into management plans.
Snag abundance, however, does not take into account live
cavity trees (Allen and Corn 1990). Although the proportion
of stems with cavities is often at least twice as high for
snags as for live trees (e.g., Goodburn and Lorimer 1998;
Fan et al. 2003b; Temesgen et al. 2008), cavities can be
more common in live trees (Goodburn and Lorimer 1998),
or the number of cavities in live trees can contribute sub-
stantially to the total number of cavity trees because live
trees are more abundant than snags. Hence, cavity tree abun-
dance, which considers both live trees and snags, should be
used as an indicator in wildlife habitat models or to formu-
late wildlife tree retention recommendations in management
plans.

Cavity tree abundance is highly variable even among for-
est stands that are similar in many other respects (Fan et al.
2004). This variability is due to the fact that cavity develop-
ment is a relatively rare event governed by stochastic proc-
esses such as fire, insect attack, disease, and mechanical or
chemical injury that can lead to tree death or injury (Carey
1983). Tree characteristics and stand attributes such as size,
decay class, and species only play a partial role in cavity
tree development (Fan et al. 2003a).

Recent studies have estimated cavity tree abundance at
the stand level. For example, Temesgen et al. (2008) used
nearest neighbor (NN) imputation and classification and re-
gression tree (CART) methods to estimate cavity tree abun-
dance. Fan et al. (2003a) estimated cavity tree abundance by
stand age and basal area using CART and described the cav-
ity tree density distribution within a cluster using the Wei-
bull probability density function. They found that the
proportion of stands with cavity trees increases with increas-
ing stand age and increasing basal area. Fan et al. (2005)
quantified the frequency and size distribution of cavity trees
in seedling–sapling, pole, sawtimber, and old-growth stands
based on plot data. Fan et al. (2004) simulated cavity tree
dynamics under alternative harvest regimes. Most other
studies concentrated on the distribution of cavity trees or
snags at the individual-tree or species level. Fan et al.
(2003b) explored factors associated with cavity tree abun-
dance and developed models that can be used to predict rel-
ative frequency of cavity trees based on tree size, species,
and decay class. Carey (1983) found that tree diameter
measured at 1.37 m above the ground (DBH) and site index
were good indicators for cavity tree abundance.

In the states of California, Oregon, and Washington, in-
formation on cavity tree and snag occurrence along with
other information such as species, DBH, and height of indi-

vidual trees is collected as part of the national inventory of
public and private forests (the Forest Inventory and Analysis
(FIA) Inventory). The FIA inventory uses an interpenetrat-
ing panel design with 10 panels in the western states, where
all plots located in one of the 10 interpenetrating panels
(10%) are measured each year (Brand et al. 2000). To esti-
mate current cavity tree and snag abundance from paneled
inventory data, the information on cavity tree and snag
abundance in the current year needs to be updated for all un-
measured panels. It is of interest to be able to do this with
variables that are readily available from forest cover maps
or remotely sensed data (e.g., aerial photographs, satellite
data, lidar). These variables will collectively be referred to
as map label variables in this study. If cavity tree and snag
abundance can be predicted from map label variables, accu-
rate, spatially comprehensive, current, and very detailed in-
formation on cavity tree and snag abundance could be
provided to managers and planners interested in assessing
wildlife habitat in their forests (Temesgen et al. 2008).

Count distributions are useful to describe nonnegative in-
teger values such as the number of snags or cavity trees per
plot. A variety of count models are based on Poisson regres-
sion, which is the basic count model (Hilbe 2007, p. 8). The
Poisson distribution assumes equidispersion and hence that
the mean and variance are equal. The development of more
general count models such as the negative binomial (NB)
distribution, which do not assume equidispersion, has been
driven by the fact that equality of mean and variance is
rarely found in natural resource data. A variety of NB re-
gression models have been developed to accommodate addi-
tional violations of distributional assumptions, such as no
zeros or excess zeros in the data, which often occur in natu-
ral resource data (Hilbe 2007, pp. 8–10).

The objectives of this study are (1) to compare the suit-
ability and predictive abilities of negative binomial regres-
sion models to estimate snag and cavity tree abundance
using map label variables, and (2) to use distribution-free
NN imputation methods to impute snag and cavity tree
abundance and compare the imputation results with the re-
sults of NB regression models.

Negative binomial regression models
Count regression models are a subset of discrete-response

regression models and aim to explain the number of occur-
rences or counts of an event. Poisson regression is the basic
count model, and the Poisson distribution is characterized as

½1� PðY ¼ yÞ ¼ mye�m

y!

where y ¼ 0; 1; 2; :::; m > 0; the random variable y is the
count response; and the parameter m is the mean. A Poisson
regression model is obtained by relating the mean m to a
vector of explanatory variables, x, by m ¼ ex

Tb, where b is
a vector of regression coefficients to be estimated, and xT is
the transpose of x.

A consequence of the Poisson probability mass function
(eq. 1) is that the mean and the variance are equal, that is
Var½Y jx� ¼ E½Y jx� ¼ m. When data do not fit the Poisson
distribution, it is typically because of overdispersion, mean-
ing the model’s variance exceeds the mean value. The NB
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distribution, which can be derived as a gamma mixture of
Poisson distributions, employs an extra parameter, a, that di-
rectly addresses the overdispersion in the Poisson models.
The NB distribution is characterized as

½2� PðY ¼ yÞ ¼ G ðyþ 1=aÞ
G ðyþ 1ÞG ð1=aÞ

1

1þ am

� �1=a am

1þ am

� �y

where y ¼ 0; 1; 2; :::and m > 0. a represents the degree of
overdispersion. The mean is m, as in the Poisson model, but
the variance is mþ am2, thus allowing the variance to ex-
ceed m (Hilbe 2007, pp. 78, 80). NB regression models are
obtained in the same way as Poisson regression models by
relating the mean, m, to a vector of explanatory variables,
x, by m ¼ ex

Tb.
Although the NB model is more flexible than the Poisson,

there is no guarantee that it provides an adequate model for
count data. Excess zeros or the absence of zeros in the data
violates the distributional assumptions that apply equally to
the Poisson and NB distributions. Other possible violations
of the distributional assumptions occur when the data con-
tain censored or truncated observations, or when the data
are structured as panels (e.g., clustered and longitudinal
data) (Hilbe 2007, pp. 11–13).

Zero-inflated Poisson (ZIP) and zero-inflated NB (ZINB)
regression models have been developed to account for data
with a high percentage of zero counts (Lambert 1992; Welsh
et al. 1996). Zero-inflated models are mixture models com-
bining a count distribution with a point mass at zero. In
zero-inflated models there are two sources of zeros: zeros
come from either the count distribution or the point mass
(Lambert 1992; Hall 2000). The ZINB model is defined as
follows:

½3� PðY ¼ yÞ

¼ pþ ð1� pÞfcountð0; x;bÞ if y ¼ 0

ð1� pÞ fcountðy; x;bÞ if y ¼ 1; 2; ::::

�

where p ¼ fzero(0; z, g) is the probability of belonging to the
point mass component, and (1 – p) is the probability of be-
longing to the count distribution. z is a vector of explanatory
variables used in the logistic model, and g is a vector of re-
gression coefficients to be estimated. fcount(y; x, b) corre-
sponds to the probability mass function of the NB
distribution given in eq. 2, and fcount(0; x, b)
¼ ð1� ð1þ amÞ�ð1=aÞÞ, where a represents the degree of
overdispersion, and m is related to a vector of explanatory
variables, x, by m ¼ ex

Tb, where b is a vector of regression
coefficients to be estimated.

Another approach for dealing with excess zeros in the
data is to model the response as having two states: a state
in which no cavity trees or snags occur, and a state in which
cavity trees or snags occur with varying levels of abundance
(Welsh et al. 1996). The first state, a binary process that
generates positive versus zero counts, is modeled by apply-
ing logistic regression. Given that cavity trees are observed,
the number of cavity trees (the second state) can be modeled
by a zero-truncated Poisson (ZTP) or zero-truncated NB
(ZTNB) distribution. The process generating positive counts
only commences after crossing a zero barrier or hurdle. The
combined models are known as conditional models (Welsh

et al. 1996) or are referred to as Poisson and NB hurdle
models or as zero-altered Poisson (ZAP) and zero-altered
NB (ZANB) models (Hilbe 2007). In the NB case, the com-
bined regression model is defined as follows:

½4� PðY ¼ yÞ

¼
fzeroð0; z; gÞ if y ¼ 0�
1� fzeroð0; z; gÞ

�
fztðy; x;bÞ if y ¼ 1; 2; ::::

(

where fzero(0; z, g) is the probability of a zero count, and
(1 – fzero(0; z, g)) is the probability of overcoming the hur-
dle. z is a vector of explanatory variables used in the logis-
tic model, and g is a vector of regression coefficients to be
estimated. fztðy; x;bÞ ¼ fcountðy; x;bÞ=ð1� fcountð0; x;bÞÞ is a
ZTNB model, with fcount(y; x, b) and fcount(0; x, b) defined
as above. All observations are used to fit fzero(0; z, g), treat-
ing positive counts as 1’s in the logistic regression frame-
work. The data are separated into two subsets, using only
data with positive counts to fit fzt(y; x, b). For more details
on ZAP and ZANB models see Cameron and Trivedi (1998,
pp. 123–128; 2005, pp. 544–546, 680, 681).

Nearest neighbor imputation methods
NN imputation approaches are nonparametric donor-based

methods where the imputed value is either a value that was
actually observed for another item or unit or the average of
values from more than one item or unit. These donors can
be determined in a variety of ways. Forest attributes that
are measured on all observations are referred to as X varia-
bles. Y variables are those forest attributes that are only
measured on a subset of observations — in this case cavity
tree and snag abundance. Observations with measured X and
Y variables are called reference observations, and target ob-
servations are those that only have X variables measured.
The similarity between target and reference data is deter-
mined with a distance metric defined in the multidimen-
sional feature space of the X variables (LeMay and
Temesgen 2005).

Methods

Data
Data for this study were obtained from the FIA inventory

from Washington, Oregon, and California collected from
2001 to 2007. For details about the inventory, see Bechtold
and Patterson (2005). Each field plot is composed of a clus-
ter of four points, with each point being composed of two
nested fixed-radius plots (subplot and macroplot) used to
sample trees of different size (Bechtold and Scott 2005).
Unique polygons (also called condition classes) on the FIA
plot are distinguished by structure, management history, or
forest type. Only data collected on the subplots were used
for this study and summarized by condition class. The data
set contained 5870 stands (or condition classes) for which
all four subplots of the FIA plot belonged to the same con-
dition class. The data covered a wide range of ground and
map label variables (Tables 1 and 2).

Cavity presence was determined in the field by classifying
each live tree or snag taller than 1.5 m and greater than
12.5 cm DBH into one of three categories: (1) no cavity
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present, (2) cavity greater than 15.2 cm diameter present, and
(3) cavity less than 15.2 cm diameter but no larger cavities
present. Cavity presence was only recorded for trees with
cavities that could, in the field crew’s judgment, be used by
wildlife such as birds or mammals. Cavity tree abundance is
assumed to be additive from individual trees in a stand and is
quantified as the number of cavity trees (both live trees and
snags) per stand without apportioning it by species or species
groups. Cavity tree abundance can be assumed to be under
recorded, as field crews are more likely to miss cavities than
record cavities that do not exist. Snag abundance is the num-
ber of standing dead trees per stand, and snags only included
dead trees that leaned less than 458 from vertical.

While 71% of the cavities were observed in snags, 29%
of the cavities were found in live trees. Live trees (87% of
standing trees) are more abundant than snags (13% of stand-
ing trees), but only 0.73% of all live trees had cavities com-
pared with 12.20% of the snags. Of the 5870 stands, 1802
and 3921 contained cavity trees and snags, respectively, re-
sulting in large numbers of zero counts for both cavity tree
and snag abundance (Fig. 1).

Mean stand age was used to represent stand development
stage. The midpoint of five height classes was used
(Table 2). Slope, aspect, elevation, and transformations of
these three variables (Salas et al. 2008) as well as the mid-
point of seven site classes (Table 2) represented site condi-
tions. The percentage of conifer basal area and very broad

forest type groups described general species composition.
Pearson’s correlation coefficient and significance between
the continuous explanatory variables and cavity tree and snag
abundance are displayed in Table 3. Four forest type groups
were used: (1) Douglas-fir (1334), (2) fir – spruce – mountain
hemlock (711), (3) other conifers (2637), and (4) hardwoods
(1188). Four owner groups were distinguished: (1) Forest
Service (2960), (2) other federal (653), (3) state and local
government (354), and (4) private (1903). The group of pri-
vate forest owners included corporations; nongovernmental
conservation and natural resources organizations; unincorpo-
rated local partnerships, associations, and clubs; Native
Americans; and individuals. The group of other federal forest
owners included the National Park Service, the Bureau of
Land Management, the Fish and Wildlife Service, the Depart-
ment of Defense/Energy, and other federal owners. Boxplots
of the owner and forest type groups for log-transformed cav-
ity tree and snag abundance are displayed in Figs. 2 and 3.

Negative binomial (NB) regression models
The complete data set was used to fit NB, ZINB, and

ZANB models in R using a maximum likelihood estimator
(R Development Core Team 2008; Zeileis et al. 2008).
Snag abundance and cavity tree abundance were used as re-
sponse variables. Map label variables related to site, owner-
ship, forest development stage, and general species
composition were used as explanatory variables. Simple in-
teractions and second-order terms of the continuous explan-
atory variables were included in the model selection.

Explanatory variables that did not contribute significantly
in explaining variation were dropped from the NB, ZINB,
and ZANB models. Nested and non-nested models were
compared using Akaike’s information criterion (AIC;
Akaike 1973, 1974) and Schwarz’s Bayesian information
criterion (BIC, Schwarz 1978):

½5� AIC ¼ �2 lnðLÞ þ 2p

½6� BIC ¼ �2 lnðLÞ þ p lnðnÞ

where p is the number of parameters estimated in the model,
n is the number of observations in the modeling data set,
and ln(L) is the natural logarithm of the maximum likeli-
hood of the model. The parameter estimates as well as the
AIC and BIC values for the cavity tree and snag models
are shown in Tables A1 and A2, respectively.

The performance of the models chosen for NB, ZINB,
and ZANB for predicting cavity tree and snag abundance
was examined using leave-one-out cross-validation. To as-

Table 1. Descriptive statistics for stands, n = 5870.

Variable Min. Mean Median Max. SD
Cavity tree counts (no./stand) 0 0.58 0 13 1.20
Snag counts (no./stand) 0 3.40 2 77 5.59
% conifer 0 0.81 1 1 0.33
Mean stand age (years) 0 105 86 989 80
Elevation (m) 0 1127 1128 3366 679
Aspect (8) 0 162 161 360 114
Slope (%/100) 0 0.32 0.30 1.50 0.23

Note: SD, standard deviation.

Table 2. Number of stands in each
site class and each height class, n =
5870.

No. of stands

Site class (m3�ha–1�year–1)
‡15.7 118
11.6–15.6 430
8.4–11.5 1051
5.9–8.3 915
3.5–5.8 1303
1.4–3.4 1124
0–1.3 929

Height class (m)
0–9.99 1318
10–19.99 2130
20–29.99 1462
30–39.99 617
40–49.99 253
‡50 90
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sess the adequacy of the models for predicting the overall
counts of cavity trees and snags, an approximate c2 good-
ness-of-fit test was calculated using observed and predicted
counts from the leave-one-out cross-validation of cavity
trees and snags, respectively:

½7� c2 ¼
Xm

k¼1

#ðyi ¼ kÞ �
X

i
Prðyi ¼ kÞ

h i2

X
i
Prðyi ¼ kÞ

where # denotes the frequency of observations yi in count
class k across the data set, and Prðyi ¼ kÞ is the predicted

probability that an observation belongs to count class k.
This statistic is c2 distributed with (m – 1) degrees of free-
dom. The number of count classes, m, was 14 and 78 for
cavity tree and snag counts, respectively. For cavity trees
the largest count class, m = 14, included counts of 13 and
up (‡13). For snags the largest count class, m = 78, included
counts of 77 and up (‡77). The reliability of the c2 statistic
is questionable, since many observed frequencies were
either zero or smaller than 5. Hence, diagnostic plots, which
plot the differences between predicted and observed propor-
tions against the count classes, k, were used to detect any
predictive bias and assess goodness-of-fit (Lambert 1992;

Cavity tree counts
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Fig. 1. Frequency distribution of stands with up to 25 counts of cavity trees (left) and snags (right), n = 5870.

Table 3. Pearson’s correlation coefficient and significance (in parentheses) between the continuous explanatory variables
and cavity tree and snag abundance, n = 5870.

Attribute % conifer
Mean stand
age (years)

Elevation
(m)

Slope
(%/100)

Aspect
(8)

Site index
(m3�ha–1�year–1)

Height
(m)

Cavity tree counts –0.063 0.103 –0.095 0.101 0.033 –0.082 0.193
(<0.001) (<0.001) (<0.001) (<0.001) (0.012) (<0.001) (<0.001)

Snag counts 0.025 0.060 0.017 0.046 0.050 –0.098 0.191
(0.058) (<0.001) (0.186) (0.001) (0.001) (<0.001) (<0.001)

Fig. 2. Number of log transformed cavity tree counts (left) and snag counts (right) against forest type groups: 200, Douglas-fir; 260, fir –
spruce – mountain hemlock; 299, other conifers; 599, hardwoods. Boxes show the data between the quartiles, thick lines represent the med-
ian, ‘‘whiskers’’ represent the extremes, with very extreme points shown as circles.
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Fortin and DeBlois 2007). The difference, dk, between pre-
dicted proportion and observed proportion is computed as
follows:

½8� dk ¼
Xn

i¼1

Prðyi ¼ kÞ
n

� �
� #ðyi ¼ kÞ

n

� �

where n is the number of observations in the data set, and
the other parameters are as defined above. As suggested by
Fortin and DeBlois (2007), the sum of absolute dk’s was de-
fined as w and used as an index of the goodness-of-fit of the
different NB regression models and the imputation methods.

Nearest neighbor (NN) imputation
Two imputation methods were employed in this study us-

ing the yaImpute package in R (Crookston and Finley 2008):
(1) MSN — most similar neighbor (Moeur and Stage 1995);
and (2) RF — randomForest (Breiman 2001; Crookston and
Finley 2008).

In the MSN procedure (Moeur and Stage 1995), the dis-
tance metric is of quadratic form:

½9� d2
ij ¼ ðXi � XjÞWðXi � XjÞ0

where Xi is the (1 � p) vector of X variables for the ith ob-
servation unit, Xj is the (1 � p) vector of X variables for the
jth reference observation unit, and W is a (p � p) sym-
metric matrix of weights. W is derived from canonical cor-
relation analysis, which makes use of the relationships
between X and Y variables so that stronger correlations re-
sult in higher weights for a particular X (LeMay and Temes-
gen 2005).

The RF method is a CART method (Breiman 2001). The
data and variables are randomly and iteratively sampled to
generate a large group, or forest, of classification and regres-
sion trees. For RF two observations are considered similar if
they tend to end up in the same terminal nodes in a forest of
classification and regression trees. The distance measure is
one minus the proportion of trees where a target observation

is in the same terminal node as a reference observation
(Crookston and Finley 2008; Hudak et al. 2008).

Cavity tree and snag abundance were used as Y variables,
as well as square root (Y0.5), inverse (1/(Y + 1)), and loga-
rithmic (ln(Y + 1)) transformations of these variables. The X
variables used for the NN imputation are mean stand age,
percentage of conifers, height class midpoint, site class mid-
point, elevation (EL), EL2, slope, slope � cosine(aspect),
and slope � sine(aspect).

The predictive performance of the NN imputation meth-
ods was evaluated by using leave-one-out cross-validation.
One stand was used as the target stand, and the remaining
5869 stands served as reference stands. This procedure was
repeated for all stands of the four Y variable sets (untrans-
formed data and three transformations of cavity tree and
snag abundance) to calculate the mean difference between
imputed and observed values (often called bias) and the
root mean squared error (square root of the mean squared
difference; RMSE; Rawlings et al. 1998, p. 444):

½10� bias ¼

Xn

i¼1

ðimputedi � observediÞ

n

½11� RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðimputedi � observediÞ2

n

vuuut
where n is the number of stands.

Bias and percent RMSE (expressed as percentage of the
mean) were used to select three imputation approaches that
were then used to compare NB regression models with im-
putation methods.

Comparison of NB regression models and NN imputation
methods

To visually compare NB regression models with NN im-
putation methods on a per-stand basis, the results of the

Fig. 3. Number of log-transformed cavity tree counts (left) and snag counts (right) against owner groups: 10, Forest Service; 20, other fed-
eral; 30, state and local government; 40, private. Boxes show the data between the quartiles, thick lines represent the median, ‘‘whiskers’’
represent the extremes, with very extreme points shown as circles.
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leave-one-out cross-validation were used to plot histograms
of the prediction errors (PE). PE is computed as follows:

½12� PE ¼ predictedi � observedi

where observedi is the observed cavity tree or snag count
for the ith stand. For the NB, ZINB, and ZANB models,
predictedi is the fitted count response for the ith stand,
which is based on both the count and zero components for
the ZINB and ZANB models. For the NN imputation meth-
ods, predictedi is the imputed count for the ith stand. Posi-
tive and negative PE values indicate overestimation and
underestimation, respectively.

Results
The bias (mean difference) for cavity tree and snag abun-

dance was close to zero for the untransformed data and the
three transformations when the NN was imputed using
MSN. RF imputation resulted in small negative bias for esti-
mating cavity tree and snag abundance using the untrans-
formed data or any of the three transformations. Bias was
smaller for MSN than for RF when the untransformed data
or either of the transformations of the Y variables was used
(Table 4).

For both MSN and RF, the relative RMSE for cavity tree
and snag abundance was smallest for the untransformed data
followed by the log-transformed data. Relative RMSE for
cavity tree and snag abundance was smaller for RF than for
MSN when the untransformed data or any of the transforma-
tions was used as Y variables (Table 4).

Based on the relative RMSE, MSN and RF imputation
with the untransformed data as Y variables were chosen to
be compared with the NB regression models. MSN imputa-
tion with the log-transformed data as Y variables was chosen
as the third method to be compared with the NB regression
models because it resulted in the second smallest relative
RMSE among the MSN approaches and in smaller bias than
any of the RF approaches.

For estimating cavity tree abundance, the ZINB model
had the largest c2 goodness-of-fit statistic, with a value of
23.79 compared with values of 11.20 and 10.88 for the NB
and ZANB models, respectively. The lower the c2 statistic,
the better the model fit. The critical c2 statistic was 22.36
for the probability of a greater value = 0.05 and 13 degrees
of freedom. The c2 goodness-of-fit statistic of the ZINB

model slightly exceeded the critical c2 statistic, suggesting
that the ZINB model might be inadequate for estimating
cavity tree abundance. There is no evidence that the NB
and ZANB models are inadequate for estimating cavity tree
abundance.

In addition, the diagnostic plots (Fig. 4) were used to
compare the models and to identify potential model misspe-
cifications. Differences, dk, were calculated as predicted pro-
portions minus observed proportions (eq. 8), so that positive
values indicate overestimations and negative values indicate
underestimation. All three regression models underestimated
zero counts and showed a good fit for counts of four and
greater (Fig. 4). The ZANB model had the lowest w value
(w = 0.0244) followed by the NB model (w = 0.0252).

The diagnostic plot for RF imputation with the untrans-
formed data as Y variables showed that the RF imputation
highly overestimated the zero cavity tree counts and highly
underestimated the number of stands with one cavity tree.
MSN imputation with the untransformed and log-transformed
data resulted in small underestimations of zero and three cav-
ity tree counts and small overestimations of the number of
stands with two and four cavity trees. The w values indicated
that the differences were closest to the reference line dk = 0
for the logarithmic MSN model (w = 0.0126) followed by
the MSN model with the untransformed data as Y variables
(w = 0.0128) (Fig. 4).

For estimating snag abundance, the NB model outper-
formed the ZINB and ZANB models according to the c2

goodness-of-fit statistic. The critical c2 statistic was 98.48
for the probability of a greater value = 0.05 and 77 degrees
of freedom. For both the ZINB and ZANB models, the c2

goodness-of-fit statistic greatly exceeded the critical c2 sta-
tistic, suggesting that the model did not adequately charac-
terize snag abundance. The ZANB model resulted in a
smaller w value (w = 0.0371) than the NB model (w =
0.0424). The smallest w value for the ZANB model indi-
cates generally small dk values and a good model fit. The
diagnostic plots (Fig. 5) show that the ZANB model per-
fectly estimates the number of stands with zero snags, while
the NB model slightly overestimates the number of stands
with zero snags. The ZINB model greatly overestimated the
number of stands with zero snags and greatly underesti-
mated the number of stands with one snag, which caused
the large w and c2 values.

Table 4. Bias and relative root mean square error (% RMSE) for the Y variables
(cavity tree abundance and snag abundance) and the square root, inverse, and
logarithmic (ln) transformations of the Y variables.

Cavity trees Snags

Method Response Bias % RMSE Bias % RMSE
MSN Y –0.01 1.62 –0.05 7.55

Y0.5 0.02 1.68 0.05 7.67
1/(Y + 1) 0.00 1.67 0.02 7.73
ln(Y + 1) 0.01 1.64 0.01 7.58

RF Y –0.14 1.52 –0.34 6.85
Y0.5 –0.13 1.54 –0.32 6.93
1/(Y + 1) –0.13 1.53 –0.25 7.03
ln(Y + 1) –0.13 1.53 –0.32 6.87

Note: MSN, most similar neighbor method; RF, randomForest imputation method.

Eskelson et al. 1755

Published by NRC Research Press



Among the NN imputation methods, RF imputation re-
sulted in the largest dk values (w = 0.0910), highly overesti-
mating the number of stands with zero and one snag counts.
MSN imputation with the untransformed data had the small-
est dk values, resulting in the smallest w value of 0.0232.
Both MSN approaches had smaller w values than the three
NB regression models (Fig. 5).

The NN imputation methods had larger numbers of pre-
diction errors between –0.5 and 0.5 than the NB regression
models for the cavity tree counts. The RF imputation using
the untransformed data as Y variables had the largest number
of prediction errors (3455), and the ZINB model had the

smallest number of prediction errors (2798) within this
range. The prediction errors of MSN, RF, and logarithmic
MSN fell between –13 and 12, –12 and 12, and –11 and 11,
respectively, covering almost the whole range of possible
values between –13 and 13 and resulting in mean square
prediction error (MSPE) values that were about twice as
large as the MSPE observed for the NB regression models
(Fig. 6). The NB and ZINB models had the smallest MSPE
value of 1.35. None of the three NB regression models re-
sulted in overpredictions larger than three counts. However,
each model had one underprediction that exceeded 12 counts
(Fig. 6).

Fig. 4. Diagnostic plots for cavity tree abundance for the negative binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB), and
three nearest neighbor (NN) imputation methods. c2 is the c2 statistic for the NB, ZINB, and ZANB models. w is the sum of the absolute
differences (dk). Y indicates that untransformed data were used; ln(Y + 1) indicates that the data were log tranformed.
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As for the cavity tree abundance on a per-stand level, the
NB regression models resulted in smaller MSPE values for
the snag abundance with the ZINB model having the small-
est MSPE value (28.08) (Fig. 7). None of the NB regression
models overpredicted snag counts by more than 17 counts,
but for all three models the largest underprediction was
around 71 counts. Most of the prediction errors were be-
tween 1 and 3 for the NB regression models, whereas most
of the prediction errors of the NN imputation methods were
between –1 and 1. RF imputation performed best among the
NN imputation methods in terms of MSPE (Fig. 7). The pre-
diction errors for the RF imputation ranged between –76 and

56. For the MSN imputation using the untransformed data as
Y variables the range was –71 to 62, and for the logarithmic
MSN imputation the range was –72 to 76.

Discussion

The results of the NN imputation methods indicate that
RF generally performed better than MSN in terms of relative
RMSE for predicting cavity tree and snag abundance. The
RF method was employed in this study because it produces
results that are generally superior to those of other NN im-
putation methods for predicting basal area and tree density

Fig. 5. Diagnostic plots for snag abundance for the negative binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB), and three
nearest neighbor (NN) imputation methods. c2 is the c2 statistic for the NB, ZINB, and ZANB models. w is the sum of the absolute differ-
ences (dk). Y indicates that untransformed data were used; ln(Y + 1) indicates that the data were log tranformed.

Eskelson et al. 1757

Published by NRC Research Press



by species (Hudak et al. 2008). The results of this study
confirm the conclusion of Hudak et al. (2008) that RF impu-
tation represents an alternative to traditional NN imputation
methods.

Transformations on the Y variables were tested with the
hope of improving the relationships between the X and Y
variable sets. An improved relationship between X and Y
variables could have had a positive impact on the canonical
correlation analysis that is used in MSN imputation to deter-
mine the weight matrix, W. Temesgen et al. (2008) imputed
cavity trees per hectare using MSN imputation and found

that using the square-root transformation of cavity trees per
hectare as the Y variable improved the imputation results.
The authors considered that the assumption about linear cor-
relations was better met with the square-root transformation
(Temesgen et al. 2008). The ranges of cavity tree abundance
(0–13) and snag abundance (0–77) were very small in this
study because actual tree counts rather than the expanded
tree per hectare values were used as Y variables. None of
the transformations substantially improved the results of the
MSN and RF imputation in terms of bias and RMSE, likely
because of the small ranges of the Y variables.

Fig. 6. Frequency plots of prediction errors of cavity tree abundance for the negative binomial (NB), zero-inflated NB (ZINB), zero-altered
NB (ZANB), and three nearest neighbor (NN) imputation methods. MSPE is the mean square prediction error. Y indicates that untrans-
formed data were used; ln(Y + 1) indicates that the data were log tranformed.
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Poisson, ZIP, and ZAP models were fit to the data but did
not provide adequate results because of the overdispersion
that is present in the data. The expected values for zero as
well as large cavity tree and snag counts were much too
low for the Poisson model and were only somewhat im-
proved by the ZIP and ZAP models (results not shown).
Hence, this study focused on the application of NB regres-
sion models that allow for overdispersion. For predicting
overall cavity tree and snag abundance the NB and ZANB
models both fit reasonably well. The NB model resulted in
the lowest c2 goodness-of-fit statistics, whereas the ZANB

model resulted in the smallest w values. Since many of the
observations have zero or less than five counts, the reliabil-
ity of the results provided by the c2 goodness-of-fit statistic
is questionable. This dubiety was confirmed by the contra-
dictory results of the c2 goodness-of-fit statistic and w val-
ues for the ZANB model. For predicting cavity tree
abundance on a per-stand basis, the NB and ZINB models
slightly outperformed the ZANB model in terms of the
MSPE value. For predicting snag abundance on a per-stand
basis, the ZINB model slightly outperformed the NB and
ZANB models in terms of MSPE. However, the differences

Fig. 7. Frequency plots of prediction errors of snag abundance for the negative binomial (NB), zero-inflated NB (ZINB), zero-altered NB
(ZANB), and three nearest neighbor (NN) imputation methods. MSPE is the mean square prediction error. Y indicates that untransformed
data were used; ln(Y + 1) indicates that the data were log tranformed.
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in the MSPE values among the three models were only min-
imal. Both the ZINB and ZANB models require the estima-
tion of more parameters than the NB model. Therefore, the
NB model should be preferred for predicting cavity tree and
snag abundance because it respects the principle of model
parsimony. The empirical distributions of cavity tree and
snag abundance (Fig. 1) are rather smooth and display a
negative exponential trend. There is no clear evidence of a
mixture of two distributions (zero point mass and count dis-
tribution) in the given case, and the NB regression model
seems to be flexible enough to fit the empirical distributions.
However, if cavity tree and snag abundance exhibited em-
pirical distributions that clearly showed evidence of two dis-
tributions (for an example see Fig. 1 in Cunningham and
Lindenmayer (2005)), the ZINB and ZANB models would
probably produce better results than the NB model. If mech-
anisms could be identified that separate the conditions asso-
ciated with zero cavity trees and snags from conditions
associated with positive counts of cavity trees and snags,
ZANB models would provide the advantage of modeling
these two aspects separately (Welsh et al. 1996). However,
in the given case, this property of the ZANB model is an
unnecessary complication to the application. In addition, the
difficulty of assigning biological meaning to the components
of the ZINB and ZANB models raises the issue of overfit-
ting (Affleck 2006) and interpretation of these models.

Cavity trees and snags are rare in forest ecosystems and
thus more difficult to predict than many other forest attrib-
utes (Temesgen et al. 2008). The prediction of cavity tree
and snag abundance is complicated by the fact that generally
little association is found with environmental factors and
stand-level attributes such as forest type, slope, aspect, and
site index (Fan et al. 2003b). No strong relationships were
found between cavity tree abundance or snag abundance
and the continuous variables available in this study (Table 3).
This finding is due to the fact that random processes such as
fire, wind, and insect outbreaks play a major role in creating
snags and cavities, resulting in a large variability in cavity
tree and snag abundance (Carey 1983). Hence, it will prob-
ably always be difficult to predict cavity tree and snag abun-
dance from stand-level variables that are readily available
from forest cover maps or remotely sensed data.

Snag abundance generally increases with successional de-
velopment (Ohmann and Waddell 2002). Fan et al. (2005)
found that mean cavity tree abundance increased with in-
creasing stand-size class, expressed as seedling–sapling,
pole, sawtimber, or old growth. In this study, mean stand
age was the only explanatory variable that was used to rep-
resent stand development stage. Including other variables
such as stand-size class in the set of explanatory variables
may improve the prediction of cavity tree and snag abun-
dance. Timber harvest and human access can have substan-
tial effects, decreasing snag abundance in areas of intensive
timber harvest and increased human access (Wisdom and
Bate 2008). Explanatory variables that represent harvest his-
tory and degree of human access could potentially improve
the prediction of cavity tree and snag abundance.

Formal tests that allow comparing parametric models such
as the NB regression models with NN imputation methods
do not exist. The diagnostic plots proposed by Lambert
(1992) to detect model misspecifications in zero-inflated

models as well as the goodness-of-fit statistic w introduced
by Fortin and DeBlois (2007) provided efficient and conven-
ient ways to show differences between observed and ex-
pected counts that could not only be used to detect model
misspecification in the NB, ZINB, and ZANB models but
also to compare the results of these models with those pro-
vided by the NN imputation methods. All NB regression
models and NN imputation methods resulted in large differ-
ences between observed and expected counts for counts of
five and smaller. However, the differences between ob-
served and expected counts decreased faster with increasing
counts for the NB regression models than for the NN impu-
tation models. This finding suggests that the NB regression
models, in particular the NB model, should be preferred
over the NN imputation methods to predict overall cavity
tree and snag abundance.

Frequency histograms of the prediction errors were used to
visualize and compare the predictions of cavity tree and snag
counts per stand of the NB regression models and the NN im-
putation methods. The NB regression models resulted in a
few large underpredictions but no large overpredictions of
cavity tree and snag counts. Hence, the NB regression mod-
els tend to be more reliable in their predictions of cavity tree
and snag abundance than NN imputation methods, which re-
sult both in large over- and under-predictions. For manage-
ment applications that take into account wildlife habitat it is
better to base actions on models that are reliable with respect
to overpredictions of cavity tree and snag abundance.

All cavity trees and snags were considered equally valua-
ble in this study. Neither cavity size and cavity location on
the tree nor decay stage and size of snags, which are impor-
tant criteria in evaluating habitat quality for certain wildlife
species, were taken into account. Hence, no inferences can
be made about the quality or potential use of cavity trees
and snags for wildlife species, even though the results of
this study provided reasonable estimates of cavity tree and
snag abundance. For sound forest management purposes, it
will be necessary to use methods that allow the estimation
of cavity tree and snag abundance while simultaneously pro-
viding information on the size and location of cavities as
well as the decay stage and size of snags. Because of their
multivariate nature, NN imputation methods could be used
to simultaneously impute the abundance of cavity trees and
snags as well as their quality attributes. Their multivariate
nature could be a major advantage of the NN imputation
methods over the NB regression models. Other quality at-
tributes that are important for certain wildlife species are
tree species, percent bark cover, and presence of a broken
top (Spiering and Knight 2005). Information on snag dy-
namics, such as longevity and the rates at which their qual-
ity changes, is also required to be able to fully take snags
into account in forest management (Aakala et al. 2008).

If the threshold number of cavity trees and snags neces-
sary for a specific wildlife species to successfully inhabit a
stand were known, the analysis could be confined to these
conditions. The NB regression models and NN imputation
methods provided good estimates for the number of stands
with four or more cavity trees and 15 or more snags. If
smaller counts than that have minimum utility in wildlife
habitat assessment, it would not be necessary to attempt to
improve the prediction of low counts.
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Conclusions
NB and ZANB models provided reasonable results for

predicting overall cavity tree and snag abundance as well as
for predicting cavity tree and snag abundance per stand. The
ZINB model did not provide very good predictions of overall
cavity tree and snag abundance but was comparable to the
NB and ZANB models when cavity tree and snag abundance
were predicted by stand. In the given case, the NB model
should be preferred to the ZINB and ZANB models because
it respects the principle of model parsimony and is easier to
apply and simpler to interpret. However, ZINB and ZANB
models could potentially provide better results than the NB
model if the distributions of cavity tree and snag abundance
showed evidence of two distributions where some of the
processes could be related to the point mass at zero.

MSN imputation outperformed the NB regression models
for predicting overall cavity tree and snag abundance, while
RF imputation performed by far the worst for this objective.

For predicting cavity tree and snag abundance per stand,
NB regression models performed better than NN imputation
methods. For this objective, NB regression models should be
preferred to NN imputation methods, since they do not re-
sult in large overpredictions of the cavity tree and snag
counts and hence provide more reliable results.
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Appendix A

Table A1. Summary of fitted negative binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB) regression models for cavity
tree abundance: coefficient estimates from count and zero models with standard errors in parentheses and significance levels (****,
p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05).

NB ZINB ZANB

Coefficient
estimate Significance

Coefficient
estimate Significance

Coefficient
estimate Significance

Count model
Intercept –2.0890 **** 0.0749 –1.0361 ***

(–0.2635) (0.2011) (0.3945)
Mean stand age (years) –0.0048 ****

(0.0010)
% conifer 1.6130 **** –0.6946 ****

(0.4744) (0.1539)
Height class midpoint (m) 0.0574 **** 0.0183 **** 0.0141 ****

(0.0091) (0.0031) (0.0042)
Elevation (m) –0.0002 **** –0.0001 ** –0.0002 **

(0.0001) (<0.0001) (0.0001)
Slope (%/100) –0.5669 0.2485 * 0.4713 **

(0.3675) (0.1388) (0.1941)
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Table A1 (concluded).

NB ZINB ZANB

Coefficient
estimate Significance

Coefficient
estimate Significance

Coefficient
estimate Significance

Aspect (8) –0.0100
(0.0131)

Slope � cosine(aspect) 0.1457 *
(0.0850)

Slope � ln(elevation) 0.1120 **
(0.0536)

Forest type: fir – spruce – mountain hemlock 0.2112 ** 0.1329 0.1062
(0.0970) (0.1020) (0.1523)

Forest type: other conifers –0.1752 ** –0.1341 * –0.0488
(0.0746) (0.0812) (0.1223)

Forest type: hardwoods –0.2197 ** 0.0421 0.5291 ****
(0.1108) (0.1271) (0.1340)

Owner: other federal –0.3578 **** –0.3802 **** –0.1994
(0.0940) (0.0924) (0.1318)

Owner: state and local government –0.09505 –0.1745 –0.2592
(0.1107) (0.1079) (0.1745)

Owner: private –0.1874 *** –0.1992 *** –0.2540 **
(0.0690) (0.0688) (0.1135)

Site class midpoint (m3�ha–1�year–1) 0.1261 ****
(0.0349)

(Mean stand age)2 0.0001 ****
(<0.0001)

(% conifer)2 –1.4630 ****
(0.3752)

(Height class midpoint)2 –0.0005 ****
(0.0002)

(Site class midpoint)2 –0.0036 **
(0.0016)

% conifer � site class midpoint –0.0690 ****
(0.0176)

Zero model
Intercept 1.9750 **** –1.3910 ****

(0.3528) (0.1556)
Mean stand age –0.0141 **** 0.0010 **

(0.0326) (0.0004)
% conifer –0.4588 ***

(0.1428)
Height class midpoint (m) –0.1132 **** 0.0450 ****

(0.0183) (0.0032)
Slope (%/100) –0.0313

(0.5501)
Aspect (8) –0.0141

(0.0495)
Slope � cosine(aspect) –0.8520 **

(0.3620)
Forest type: fir – spruce – mountain hemlock –0.4665 0.2280 **

(0.4506) (0.1052)
Forest type: other conifers 0.3420 –0.2235 ***

(0.2791) (0.0815)
Forest type: hardwoods –1.0973 *** 0.3999 ****

(0.3347) (0.1200)
Owner: other federal –0.4898 ****

(0.1076)
Owner: state and local government –0.0213

(0.1252)
Owner: private –0.1388 *

(0.0725)
No. of estimated parameters 22 21 21
AIC 11 450 11 413 11 463
BIC 11 597 11 553 11 604

Note: AIC, Akaike’s information criterion; BIC, Schwarz’s Bayesian information criterion.
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Table A2. Summary of fitted negative binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB) regression models for
snag abundance: coefficient estimates from count and zero models with standard errors in parentheses and significance levels (****,
p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05).

NB ZINB ZANB

Coefficient
estimate Significance

Coefficient
estimate Significance

Coefficient
estimate Significance

Count model
Intercept 1.2050 **** 1.9224 **** 1.8150 ****

(0.1207) (0.1390) (0.1601)
Mean stand age (years) –0.0019 **** –0.0058 **** –0.0077 ****

(0.0003) (0.0009) (0.0012)
% conifer –0.4704 **** –0.7467 **** –0.8670 ****

(0.0862) (0.1202) (0.1423)
Height class midpoint (m) 0.0356 **** –0.0029 –0.0035

(0.0024) (0.0072) (0.0088)
Elevation (m) 0.0001 **** 0.0001

(<0.0001) (<0.0001)
Slope (%/100) 0.0872 –0.0102 0.0756

(0.0828) (0.8278) (0.3434)
Aspect (8) 0.0219 ** 0.0254 *** 0.0204 *

(0.0092) (0.0090) (0.0111)
Slope � cosine(aspect) 0.1531 ** 0.1422 **

(0.0624) (0.0585)
Slope � ln(elevation) –4.7350 **

(2.2280)
Slope � ln(elevation2) 2.3670 **

(1.1130)
Forest type: fir – spruce – mountain hemlock 0.4957 **** 0.4312 **** 0.4157 ****

(0.0676) (0.0598) (0.0790)
Forest type: other conifers –0.2019 **** –0.1383 *** –0.0854

(0.0523) (0.0460) (0.0600)
Forest type: hardwoods –0.0634 0.0329 0.0183

(0.0737) (0.0813) (0.1012)
Owner: other federal –0.4395 **** –0.2513 **** –0.2715 ****

(0.0609) (0.0620) (0.0770)
Owner: state and local government –0.3099 **** –0.2174 *** –0.2093 **

(0.0790) (0.0747) (0.0935)
Owner: private –0.6858 **** –0.5988 **** –0.6286 ****

(0.0471) (0.0456) (0.0599)
Site class midpoint (m3�ha–1�year–1) –0.0137 ** –0.0026

(0.0055) (0.0056)
Mean stand age � % conifer 0.0041 **** 0.0061 ****

(0.0010) (0.0013)
% conifer � height class midpoint 0.0250 *** 0.0254 ***

(0.0077) (0.0690)

Zero model
Intercept 0.4584 0.0938

(0.4342) (0.1900)
Mean stand age (years) 0.0190 ****

(0.0035)
% conifer –0.0097 –0.3350 **

(0.4706) (0.1330)
Height class midpoint (m) –0.1052 *** 0.0737 ****

(0.0389) (0.0040)
Elevation (m) –0.0003 ** 0.0001 **

(0.0001) (0.0001)
Slope (%/100) –1.2142 **** 0.4784 ****

(0.3354) (0.1449)
Aspect (8) 0.0873 *** 0.0020

(0.0337) (0.0159)
Slope � cosine(aspect) 0.2885 **

(0.1133)
Forest type: fir – spruce – mountain hemlock 0.6048 ****

(0.1385)
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Table A2 (concluded).

NB ZINB ZANB

Coefficient
estimate Significance

Coefficient
estimate Significance

Coefficient
estimate Significance

Forest type: other conifers –0.3117 ****
(0.0927)

Forest type: hardwoods 0.0921
(0.1202)

Owner: other federal 0.3730 * –0.3909 ****
(0.2091) (0.1028)

Owner: state and local government –0.0243 –0.1261
(0.3440) (0.1452)

Owner: private 0.0104 –0.4413 ****
(0.1641) (0.0860)

Site class midpoint (m3�ha–1�year–1) –0.1092 *** –0.0453 ****
(0.0370) (0.0087)

Mean stand age � % conifer –0.0125 **
(0.0050)

% conifer � height class midpoint –0.0029 ****
(0.0004)

% conifer � site class midpoint 0.1430 ***
(0.0438)

Height class midpoint � site class midpoint 0.0143 ****
(0.0038)

No. of estimated parameters 16 32 32
AIC 26 205 25 726 25 632
BIC 26 311 25 940 25 846

Note: AIC, Akaike’s information criterion; BIC, Schwarz’s Bayesian information criterion.
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