
Geostatistical modeling of riparian forest
microclimate and its implications for sampling

Bianca N.I. Eskelson, Paul. D. Anderson, Joan C. Hagar, and
Hailemariam Temesgen

Abstract: Predictive models of microclimate under various site conditions in forested headwater stream – riparian areas are
poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used ri-
parian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging
(OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature
(Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above
stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in
terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of
shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic
sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for in-
creasing efficiency of microclimate monitoring in riparian areas.

Résumé : Les modèles de prédiction du microclimat pour différentes conditions de station dans les zones riveraines boisées
des cours d’eau de tête de bassin sont peu développés et les procédures d’échantillonnage pour caractériser les gradients
sous-jacents du microclimat riverain sont rares. Nous avons utilisé des données de microclimat riverain collectées le long de
huit cours d’eau de tête de bassin dans la chaîne côtière de l’Oregon pour comparer le krigeage ordinaire (KO), le krigeage
universel (KU) et le krigeage avec dérive externe (KDE) pour la prédiction localisée de la température moyenne maximale
de l’air (Tair). Plusieurs caractéristiques topographiques et de la structure de la forêt ont été considérées comme paramètres
spécifiques à la station. L’élévation au-dessus du cours d’eau et la distance du cours d’eau étaient les covariables les plus
importantes dans les modèles de KDE qui donnaient de meilleurs résultats que le KO et le KU en termes d’écart-type. La
répartition des échantillons a été optimisée sur la base de la variance de krigeage et des moyennes pondérées du critère de
la plus courte distance à l’aide d’un algorithme de recuit simulé. La répartition optimisée des échantillons donnait de meil-
leurs résultats que la répartition systématique en termes de variance moyenne de krigeage, surtout lorsque le nombre
d’échantillons était faible. Ces résultats suggèrent des méthodes pour augmenter l’efficacité du suivi du microclimat dans les
zones riveraines.

[Traduit par la Rédaction]

Introduction

Microclimates are defined by local differences in environ-
mental variables such as temperature, light, wind speed, and
moisture close to the Earth’s surface. Microclimates can vary
on a scale of a few tens of metres, a few centimetres, or even
a few millimetres, and such small-scale differences in climate
are important to plants and animals (Adams 2007, p.79). Mi-
croclimates can be spatially and temporally dynamic in asso-
ciation with changes in ecosystem structure arising from
natural processes such as vegetation growth, succession, and
disturbance and anthropogenic factors such as forest manage-
ment (Chen et al. 1999). Characterization of forest microcli-

matic gradients can help explain observed patterns in
biodiversity, biogeochemical cycles, and other system-level
processes (Naiman et al. 2000).
Microclimate gradients that traverse forest edges have been

studied thoroughly (e.g., Chen et al. 1993, 1995; Geiger et al.
2003, section 37), whereas studies of forest riparian microcli-
mate gradients have been undertaken only recently (Olson et
al. 2007). Forest riparian microclimate is influenced by fac-
tors such as the stream channel (Moore et al. 2005), the top-
ography near the interface between terrestrial and aquatic
systems (Rambo and North 2008), and the hydrology and
macroclimate of the area (Olson et al. 2007). The complexity
of riparian microclimatic gradients produces great heteroge-
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neity in processes and diversity of habitats and therefore has
an important influence on fish and wildlife (Richardson et al.
2005). Forest management strategies such as the retention of
streamside vegetation buffers may alter riparian microcli-
mates (Chen et al. 1999) and affect stream conditions (e.g.,
stream temperature) (Olson et al. 2007).
Knowledge of the spatial distribution of microclimate con-

ditions is required to meet management objectives for fish
and wildlife habitats in streams and riparian buffers of head-
water forests. Intensive sampling to determine spatial varia-
tion in microclimate can be impractical. Ability to predict
microclimate conditions for unsampled locations within ripar-
ian buffers of headwater streams may obviate the need for in-
tensive measurement. However, few studies have focused on
modeling microclimate variables in forested landscapes (Van-
walleghem and Meentemeyer 2009), and to our knowledge,
none has addressed modeling of microclimate characteristics
in riparian buffers of headwater streams.
Riparian microclimate data have typically been collected

using transects across stream–riparian gradients (see table 1
in Olson et al. 2007) and therefore violate the independence
assumption underpinning classical statistical approaches such
as multiple linear regression. Geostatistical methods such as
kriging provide a more flexible analytical approach that ac-
commodates spatially autocorrelated data. In comparisons of
kriging and regression techniques, kriging with external drift,
which incorporates covariates other than spatial location, out-
performed simple linear regression (soil metrics; Bourennane
et al. 2000) and provided better forest temperature predictions
than multiple regression (Vanwalleghem and Meentemeyer
2009). Consequently, our interest was to assess the utility of
different kriging approaches to model headwater riparian mi-
croclimate.
The effectiveness of predictive modeling depends largely

on the quality of the underlying data (Stein and Ettema
2003). The sampling scheme impacts both the suitability of
data for predictive modeling and the efficiency and costs of
a survey (van Groenigen et al. 1999). Therefore, optimization
of sampling intensity and spatial pattern for quantification of
complex microclimate gradients in riparian buffers would in-
crease the efficiency of efforts to monitor forest management
impacts on riparian microclimate. Headwater streams of the
Pacific Northwest typically exert the strongest effect on air
temperature and relative humidity within 10 to 15 m of the
stream channel (Rykken et al. 2007; Anderson et al. 2007).
The spacing between microclimate sensors needs to be suffi-
cient to quantify the nonlinear microclimate gradients at both
the stream–buffer edge and the buffer–upslope edge (Olson et
al. 2007). However, in most past studies, microclimate sen-
sors have been placed at set intervals along a stream–riparian
gradient. For example, Hagan and Whitman (2000) and
Welsh et al. (2005) installed microclimate sensors every
10 m from the stream, whereas Brosofske et al. (1997) and
Dong et al. (1998) sampled microclimate at the stream center,
the buffer edge, and at 15, 30, and 60 m upslope of the buf-
fer edge. In contrast, Anderson et al. (2007) sampled micro-
climate with a higher intensity close to the stream than
upslope (stream center, ~6, ~15, ~25, ~50 m, and at 20 m in-
tervals beyond 50 m). To optimize sampling and long-term
monitoring designs, search algorithms in combination with
interpolation methods such as kriging are increasingly being

used in other fields. For example, Li and Chan Hilton (2005,
2007) optimized groundwater monitoring networks. In the
terminology of this paper, Brus and Heuvelink (2007) opti-
mized samples with kriging with external drift using the si-
mulated annealing algorithm.
Our study objectives with respect to eight specific head-

water stream reaches were as follows: (i) identify possible
predictor variables for modeling mean daily maximum air
temperature; (ii) compare the performance of ordinary krig-
ing, universal kriging, and kriging with external drift in pre-
dicting mean daily maximum air temperature along transects
from streamside to upslope; (iii) design an optimal sample
pattern for microclimate sensors across riparian gradients
based on the kriging variance and the weighted means of
shortest distances criterion; and (iv) contrast the prediction
performance of kriging based on the optimized sample pat-
terns and random samples with the prediction performance
of kriging based on a systematic sample pattern for a range
of sample sizes.

Methods

Data
Microclimate data from eight headwater stream reaches

(subsequently referred to as reach or reaches) were collected
in 2006 at four sites of the Bureau of Land Management
Density Management Study in the Coast Range of Oregon,
USA (Table 1; for DMS details, see Cissel et al. 2006).
Reach locations ranged from west of Corvallis to north of
Roseburg, Oregon, USA (range 43°17′30″N to 44°31′41″N,
122°27′55″W to 123°41′11″W).
A sampling block (72 m × 72 m horizontal distance) was

randomly located along each reach. One 72 m axis of the
block was oriented approximately parallel to the stream; the
center of the block along this axis will be referred to as the
center line (CL). The second axis extended approximately
36 m (horizontal distance) upslope and perpendicular to the
CL on each side of the stream (Fig. 1). Microclimate sensors
were positioned along four transects. Transects with 3 m hor-
izontal spacing were laid out perpendicular to the CL at the
32 and 68 m marks of the CL. Transects with 10 m horizon-
tal spacing were laid out perpendicular to the CL at two ran-
dom points between 0 and 72.
Air temperature at 1 m above the ground was measured

using three-channel humidity and dual-temperature data log-
gers (models GPSE 101 203 and GPSE 301 203, A.R. Harris
Ltd., Christchurch, New Zealand). The data loggers were at-
tached to fiberglass rods inserted into the ground, and venti-
lated plastic cups were suspended over each data logger to
prevent direct exposure to the sun. Because of the limited
number of available sensors, microclimate monitoring rotated
among the eight reaches between 19 July and 11 September
2006 (see Table 1), with sensors deployed three to seven
(median = 5) consecutive days at each site. Sensors at each
transect position (Fig. 1) recorded microclimate values every
20 min. The data were initially reduced to hourly mean val-
ues. Subsequently, mean daily estimates of the maximum
hourly air temperature (Tair) values were computed for each
sampled location. For the seven of eight reaches that were
sampled on four or more days, daily maximum temperature
values were averaged across all sensors to identify the three
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Table 1. General information on the eight headwater sites.

Site
BLM
district Latitude (N)

Longitude
(W)

Elevation
(m) Density Buffer

Stream
slope (%)

Streamside
slope (%)

Aspect of
channel orientation (°)

Date in 2006 of microclimate
measurements

Keel Mountain,
reach 17 (KM17)

Salem 44°31′41.0″ 122°37′55.0″ 700 Control Control 17 12 266 29–31 August

Ten High, reach 46
(TH46)

Eugene 44°16′50.0″ 123°31′06.0″ 525 Control Control 16 22 92 8–16 August

Keel Mountain,
reach 18 (KM18)

Salem 44°31′41.0″ 122°37′55.0″ 745 Moderate Two site potential
tree heights

20 21 269 19–24 July

Keel Mountain,
reach 19 (KM19)

Salem 44°31′41.0″ 122°37′55.0″ 730 Moderate Two site potential
tree heights

25 20 230 15–23 August

Bottom Line, reach
13 (BL13)

Eugene 43°46′20.0″ 123°14′11.0″ 295 Moderate Two site potential
tree heights

18 66 323 5–11 September

Keel Mountain,
reach 21 (KM21)

Salem 44°31′41.0″ 122°37′55.0″ 670 Moderate Variable width 10 43 265 24–29 August

Ten High, reach 75
(TH75)

Eugene 44°16′50.0″ 123°31′06.0″ 520 Moderate Variable width 60 40 173 1–7 August

OM Hubbard,
reach 36 (OM36)

Roseburg 43°17′30.0″ 123°35′00.0″ 510 Moderate Variable width 19 40 71 12–19 September

Fig.1.L
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Several topographic and forest structure characteristics
were investigated as possible contributors to spatial variation
in microclimate. The horizontal distance to the stream (DTS,
m) and the height above the stream (HAS, m) were recorded
for each sensor position. DTS and HAS reflected existing
knowledge of gradients in microclimate that occur laterally
from stream to upslope (e.g., Brosofske et al. 1997; Ander-
son et al. 2007). The combination of DTS and HAS indicates
the degree of stream channel incision. Log transformations of
DTS and HAS were calculated as ln(DTS) = ln(DTS + 0.1)
and ln(HAS) = ln(HAS + 5), respectively, which linearized
their relationship with Tair for some of the eight reaches.
Measures of stand basal area and canopy leaf area index
(LAI) were considered as indices of forest canopy intercep-
tion of incident solar radiation (insolation) and therefore a
limit to heat loading (Russell et al. 1989). Canopy cover also
serves to insulate the channel microclimate from air exchange
and therefore to maintain a near-stream humidity and cooler
air mass. LAI (m2 foliage/m2 ground) and the diffuse non-
interceptance (DIFN), defined as the proportion of visible
sky, were measured at each microclimate sensor location us-
ing hemispherical detection of canopy light transmittance
(plant canopy analyzer, model LAI-2000, LI-COR Bioscien-
ces, Lincoln, Nebraska). At the same points, the overstory
density measures of trees per hectare (TPH) and basal area
per hectare (BA/ha, in m2/ha) were calculated based on a
variable radius plot with basal area factor 8. Percent (%)
cover of forbs, ferns, low shrubs (<1.4 m), and tall shrubs
(>1.4 m) were visually determined on 1 m × 1 m plots
with the microclimate sensors at the plot center.
DTS was expected to have a consistent spatial influence on

microclimate. At a finer spatial scale, we hypothesized that
spatial variation in canopy density and, therefore, insolation
interact with topography to locally influence microclimate
based on characterizations of vegetation patterns in riparian
zones (e.g., Pabst and Spies 1998; Hibbs and Bower 2001).
To quantify the relationship between Tair and the available
covariates, Pearson’s correlation coefficient was calculated.

Kriging
Kriging is a geostatistical approach that provides best lin-

ear unbiased predictions of the variable of interest, Z, at a lo-
cation, s0, using the values zi observed at neighboring
locations si. A large number of kriging methods exist (see
Goovaerts 1997, pp. 125–258). Ordinary kriging (OK) does
not allow for trend, whereas universal kriging (UK) incorpo-
rates the spatial coordinates as a linear or quadratic function
in a trend model. Kriging with external drift (KED) allows
the inclusion of additional covariates in the trend model,
which in our study can account for the stream–riparian gra-
dient in microclimate variables.
When the mean value of the variable of interest is assumed

to be an unknown constant, kriging is called OK (Goovaerts
1997, p. 132; de Gruijter et al. 2006, p. 285). The predictions
are based on the following model:

½1� ZðsÞ ¼ mþ 30ðsÞ
where m is the constant stationary function or global mean
and 3′(s) is the spatially correlated stochastic part of the var-
iation (Hengl 2007). The OK predictions are made as fol-
lows:

½2� bzOKðs0Þ ¼ Xn
i¼1

wiðs0Þ � zðsiÞ ¼ lT0 � z

where lT0 is the transpose of the vector of kriging weights
(wi), and z is the vector of n observations (Hengl 2007).
Z at some location s0 can be modeled as the sum of a de-

terministic component, the drift (i.e., covariate), and a sto-
chastic component:

½3� ZðsÞ ¼ mðsÞ þ 30ðsÞ
where the drift m(s) is the deterministic part and the stochas-
tic component 3′(s) accounts for the fluctuations around the
drift (Bourennane and King 2003). In KED, the drift m(s) is
defined externally as a linear function of covariates (Bouren-
nane et al. 2000), and the predictions are made as follows:

½4� bzKEDðs0Þ ¼ Xn
i¼1

wKED
i ðs0Þ � zðsiÞ ¼ dT0 � z

for

½5�
Xn
i¼1

wKED
i ðs0Þ � qkðsiÞ ¼ qkðs0Þ; k ¼ 1; . . . ; p

where z is the variable of interest, qk represents the covari-
ates, dT0 is the transpose of the vector of KED weights
(wKED

i ), p is the number of covariates, and z is the vector of
n observations (Hengl 2007).
UK is a special case of KED in which the drift is repre-

sented as a linear combination of the coordinates. For UK,
the covariates qk in eq. 5 are coordinates only. UK was per-
formed with linear and quadratic trends to predict Tair. For
KED, all available covariates were used as external drift indi-
vidually and in combination with HAS and DTS. For a de-
tailed description of OK, UK, and KED, see, for example,
Goovaerts (1997, pp. 132, 139, and 194, respectively) or
Hengl (2007).
Kriging requires prior knowledge of the model of spatial

variation. Using all available observations of Tair for each of
the eight sites, we first estimated the variogram parameters
(partial sill, range, and nugget) of a spherical variogram
model for each site separately by applying the methods-of-
moments with weighted least squares (de Gruijter et al.
2006, pp. 173–174). With these parameter estimates as start-
ing values, restricted maximum likelihood (REML) estima-
tion was used to obtain estimates of the partial sill, range,
and nugget parameters without bias (see Lark and Webster
2006). The REML estimates were then employed in the krig-
ing approaches.

Validation of kriging methods
The performance of the kriging methods was compared us-

ing leave-one-out cross-validation, where one microclimate
observation at a time was temporarily removed from the data
set and its value was predicted from the remaining n – 1 ob-
servations using OK, UK, and KED with different external
drift variables. The performance of each kriging method was
assessed with the mean error (ME) and root mean square er-
ror (RMSE) defined as follows:
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½6� ME ¼ 1

n

Xn
i¼1

ðzi �bziÞ

½7� RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðzi �bziÞ2
s

where zi is the observed Tair value and bzi is the predicted Tair
value.
For unbiased methods, ME should be close to zero. Two-

sided t tests were performed to determine whether ME dif-
fered significantly from zero for the different models. RMSE
should be small for accurate predictions and is expressed as
percentage of the observed mean Tair.
All statistical analyses were performed in R (R Develop-

ment Core Team 2009). The geoR package (Ribeiro and Dig-
gle 2001) was used to execute OK, UK, and KED.

Optimization of sampling locations
de Gruijter et al. (2006, p.132) recommended purposive

sampling over probability sampling for model-based map-
ping. When the variogram is known or can be estimated, geo-
statistical samples can be used to optimize the sampling
locations (de Gruijter et al. 2006, p. 149), which is typically
done by minimizing either the mean or maximum kriging
variances (de Gruijter et al. 2006, p. 155). van Groenigen
et al. (1999) employed the simulated annealing algorithm to
optimize spatial soil sample patterns by minimizing the
mean OK variance, whereas Brus and Heuvelink (2007)
made use of the simulated annealing algorithm to obtain an
optimized sample pattern with minimum kriging variance.
When information about the variogram is unavailable, spa-
tial coverage sampling is an attractive alternative to geostat-
istical sampling (de Gruijter et al. 2006, p. 133). Walvoort
et al. (2010) developed an R package for designing spatial
coverage samples by minimizing the mean squared shortest
distance using k-mean algorithm. van Groenigen and Stein
(1998) minimized the mean shortest distance by the simu-
lated annealing algorithm. van Groenigen et al. (2000) ex-
tended this approach by minimizing the weighted means of
shortest distance (WMSD) criterion, which includes a
weighting function based on prior knowledge that allows
for more intense sampling in subareas with high priority.
In this study, sampling locations were optimized using the

kriging variance (KVAR) and the WMSD criterion for each
of the eight reaches for sample sizes (m) ranging from 15 to
25. For KVAR, the sample pattern was chosen that had the
smallest mean kriging variance for a given m. The kriging
variance at s0 for kriging with external drift is as follows:

½8� bs2
KEDðs0Þ ¼ cð0Þ � cT0C

�1c0

þ ðq0 � qTC�1c0ÞTðqTC�1qÞ�1ðq0 � qTC�1c0Þ
where c(0) is the constant variance of 3(s), c0 is the vector of
covariances of residuals at the prediction location and sam-
pling locations, C is the variance–covariance matrix of the
residuals at the sampling locations, q0 is a vector of covari-
ates at the prediction location, and q is the matrix of covari-
ates at the m sampling locations (Hengl 2007; Müller 2007,
p. 15). The sampling locations that minimized the mean kri-

ging variance were found by employing the simulated anneal-
ing algorithm (for details on the simulated annealing
algorithm, see Reeves 1993).
For WMSD, the simulated annealing algorithm was em-

ployed to obtain the sampling locations that minimize the
WMSD criterion for a given m. Locations within 15 m of
the stream received a larger weight than locations farther
away from the stream, resulting in more intensive sampling
close to the stream. The WMSD criterion for a sample S is
given as

½9� 4WMSDðSÞ ¼
Xn�m

j¼1

wj � dðsj;SÞ
ðn� mÞ

where d(sj,S) is the Euclidean distance from the jth evalua-
tion point (sj) to the closest sample point of the sample S,
n – m is the number of evaluation points where n is the num-
ber of available observations at a specific site, and

wj ¼
2 for DTS � 15 m

1 for DTS > 15 m

(
is the weight given to the locations based on their distance to
the stream (van Groenigen et al. 2000). The WMSD-opti-
mized samples are based only on the distances among sample
and evaluation points, whereas the KVAR-optimized samples
rely on the performed kriging and the estimated variogram
parameters.
In addition to the optimized sampling locations, random

(RAND) and systematic (SYST) samples were taken at each
reach for each m = 15 to 25. All systematic samples included
four evenly spaced sample points on the 10 m transects, and
the remaining sample points were evenly distributed along
the 3 m transects.
Kriging was performed for the eight reaches based on the

samples selected for each of the four sampling methods
(KVAR, WMSD, RAND, and SYST) for each m = 15 to 25.
The kriging model that performed best for specific reach was
chosen (see Table 4). To compare the kriging results based
on the four different sample patterns for each reach, the com-
parison had to be based on the same evaluation points. SYST
was compared with the other three sample patterns (KVAR,
WMSD, and RAND) by calculating the mean kriging var-
iance (MeanV) for each method based only on the evaluation
points that were identical for SYST and the other sample pat-
tern for a given sample size m. This allowed a comparison of
MeanVother of each sampling method (KVAR, WMSD, and
RAND) with MeanVSYST of the SYST sample, and the rela-
tive efficiency (RE) could be calculated as follows:

½10� RE ¼ MeanVother

MeanVSYST

where RE > 1 means that the SYST sample was more effi-
cient than the other sample pattern with which it was com-
pared, whereas for RE < 1, SYST was less efficient than the
other sample pattern. The RE values of the four sample pat-
terns were plotted across the sample sizes m = 15 to 25 for
each of the eight reaches. Because the result of RAND de-
pends on the sample drawn, 200 random samples were drawn
and the average MeanV over the 200 samples (see de Gruijter
et al. 2006, p. 19) was compared with MeanVSYST.
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Results
Species composition, forest structure, and topography, as

well as Tair, varied greatly among the eight reaches. Reaches
KM17 and OM36 had far smaller mean Tair (13.7 and 16.2
°C, respectively) than the other six reaches for which mean
Tair ranged between 23.6 and 28.9 °C (Table 2). Mean fern
and low shrub covers were greater than 25% for the sites
with steep streamside slope and less than or equal to 25%
for the sites with moderate streamside slope (Tables 1 and
2). A similar trend was observed for the mean cover of tall
shrubs, which tended to be greater (≥16%) for reaches with
steep streamside slope than for those with moderate stream-
side slope (≤23%). Reaches with greater understory vegeta-
tion cover (BL13, KM21, OM36, and TH75) exhibited
greater DIFN (≥0.05) and smaller LAI (≤4.33) values than
those with less understory vegetation cover (DIFN ≤ 0.05,
LAI ≥ 4.06; KM17, KM18, KM19, and TH46).

Correlations between Tair and the covariates
Several correlations between Tair and the covariates were

apparent (Table 3). Except for one reach, significant correla-
tion existed between Tair and DTS at the 5% level. HAS was
significantly correlated with Tair on all sites. For three sites,
the range of Tair was small on the north side of the stream
and large on the south side (see Fig. 1). LAI showed signifi-
cant negative correlation with Tair for six of the eight reaches,
and DIFN showed significant positive correlation with Tair for
four of the eight reaches. The overstory density variables
(BA/ha, TPH) were significantly correlated with Tair on more
reaches than the understory percent cover variables. The cor-
relation between Tair and the overstory and understory cover
variables was positive for some reaches and negative for
others.

Kriging
For KED, only the models that provided one of the three

lowest RMSE values for at least one of the reaches are pre-
sented (Table 4). For two reaches, the log transformation of
DTS provided smaller RMSE values than untransformed
DTS. For four reaches, the log transformation of HAS pro-
vided smaller RMSE values than the untransformed HAS.
For these reaches, log transformations ln(DTS + 0.1) and
ln(HAS + 5) were used for the KED models, whereas the
untransformed data were used for the remaining reaches.
UK with quadratic trend provided the best and third best
results in terms of RMSE for two reaches. For all reaches,
the best KED model outperformed the predictions of the
OK and UK with linear trend models in terms of RMSE.
KED models that included DTS or ln(DTS + 0.1) as exter-
nal drift outperformed KED models that included HAS or
ln(HAS + 5) as external drift in terms of RMSE for half
the reaches. Tair predictions were more accurate for models
including HAS or ln(HAS + 5) as external drift instead of
DTS or ln(DTS + 0.1) for the remaining four reaches.
Understory cover covariates tended to be more significant

in the KED models for reaches with large DIFN values
(Bl13, KM21, OM36, TH75), whereas overstory cover varia-
bles tended to be more significant in KED models for
reaches with smaller DIFN values (KM17, KM18, KM19,
TH46). T
ab
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ME values did not differ significantly from zero for any of
the models (all p values > 0.48), meaning that all models
provided unbiased predictions. Therefore, ME values are not
presented.

Optimization of sampling locations
The KVAR, WMSD, and RAND sample patterns were

compared with the SYST sample in terms of RE. The RE
values for RAND were greater than 1 for all sample sizes m
for six of the reaches (Fig. 2). For KM21 and OM36, the RE
values for RAND were less than 1 for m = 15 (Fig. 2).
The RE values of both KVAR and WMSD tended to be

less than one, hence exceeding the efficiency of SYST, for
sample sizes m ≤ 23 and m ≤ 22, respectively (Fig. 2). The
largest improvement in efficiency over SYST tended to occur
for small sample sizes, m ≤ 20 (Fig. 2). The RE values of
KVAR tended to be slightly smaller than the RE values of
WMSD for most sample sizes.
SYST sample points were allocated so that there were al-

ways four sample points on each of the two 10 m transects
and the remaining sample points were distributed evenly
across the 3 m transects. Therefore, SYST always resulted in
sample points across all four transects. For small sample
sizes (m ≤ 20), KVAR and WMSD mostly resulted in sample
locations on only three of the four transects. If the fourth
transect had sample points, these were typically within 15 m
of the stream (Fig. 3, example for BL13). For larger sample
sizes (m > 20), KVAR and WMSD also resulted in sample
points across all four transects.

Discussion

This is the first study to apply kriging methods for predict-
ing microclimate attributes in riparian zones and to explore
the efficiency of different sample patterns for the deployment
of microclimate sensors. Incorporating selected topographic
and stand structure characteristics into kriging models im-
proved their predictive ability. Optimized sample patterns ex-

hibited a potential to improve kriging predictions compared
with systematic samples.

Correlations between Tair and the covariates
High variability in the correlations between Tair and the co-

variates across the eight reaches was likely due in part to
asynchronous sampling. Because the microclimate sensors
were not concurrently deployed across the eight reaches, Tair
was not calculated for the same three days and ranged from
July to September among the reaches (Table 1). Although
the three hottest days were chosen from the available data at
each reach, the relationships between Tair and the available
environmental covariates might differ at the reaches simply
because of the different times at which the air temperatures
were recorded. This may explain the lower mean Tair values
for KM17 and OM36 compared with the other reaches. Addi-
tional research is warranted to quantify changes in the gra-
dient of Tair from the wet stream channel to the dry upslope
during the summer months, and to determine whether the re-
lationships between Tair and the available covariates change
over this time period.
We observed an impact on the correlation coefficients be-

tween Tair and DTS for reaches in which Tair differed widely
between the two sides of the stream. This differential behav-
ior of Tair was observed for three reaches (KM18, KM21, and
TH46) and can be attributed to the approximate east–west
stream orientation (sensu Gomi et al. 2006; Webb et al.
2008). All three sites exhibited higher mean Tair and a higher
range in Tair on the side south of the stream, whereas large
changes in Tair with increasing distance from the stream did
not occur on the northern side of the stream. However, this
extreme difference in behavior of Tair on the north and south
sides of the stream was not observed at the similarly oriented
KM17. This could be explained by lower slope on the south
side of this reach compared with the other three. These re-
sults suggest that in some cases predictions may be more ac-
curate if stream sides were modeled separately. We were
unable to do this because of the small number of available
observations, but we recommend that future research explores

Table 3. Pearson’s correlation coefficient between the mean maximum air temperature (Tair) and the covariates for the eight
stream reaches. See Table 1 for descriptions of reaches.

Covariates
BL13
(n = 64)

KM17
(n = 65)

KM18
(n = 61)

KM19
(n = 50)

KM21
(n = 65)

OM36
(n = 65)

TH46
(n = 62)

TH75
(n = 64)

DTS 0.72 0.43 0.59 0.28 0.70 0.74 0.40 0.83
ln(DTS + 0.1) 0.81 0.43 0.60 0.26 0.72 0.71 0.36 0.85
HAS 0.59 0.34 0.84 0.72 0.73 0.74 0.51 0.59
ln(HAS + 5) 0.73 0.32 0.84 0.47 0.74 0.61 0.41 0.63
LAI –0.26 –0.55 –0.21 –0.39 –0.53 –0.44 –0.89 –0.23
DIFN 0.09 0.33 –0.01 0.24 0.38 0.36 0.80 0.22
MTA –0.31 –0.15 –0.25 0.16 –0.35 0.46 0.25 0.39
BA/ha –0.08 0.60 0.31 –0.10 –0.40 –0.14 0.51 –0.35
TPH –0.17 0.33 0.31 –0.42 –0.14 –0.18 0.51 –0.39
% Low shrubs 0.57 0.09 0.45 0.36 –0.02 0.20 –0.02 0.27
% Tall shrubs –0.18 –0.35 0.31 0.27 –0.07 –0.31 –0.10 0.22
% Forbs 0.26 –0.16 –0.30 –0.05 –0.38 0.09 0.18 0.22
% Ferns –0.44 0.12 0.08 0.01 0.16 –0.02 –0.08 –0.24

Note: DTS, distance to stream (m); HAS, height above stream (m); LAI, leaf area index (m2 foliage/m2 ground); DIFN, proportion visible
sky; BA/ha, basal area per hectare (m2/ha); TPH, trees per hectare. Values in bold indicate significant linear coefficient of correlation at the 5%
level.
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the relationships between microclimate and physical variables
for stream sides separately.
As expected, LAI was negatively correlated with Tair, and

DIFN tended to be positively correlated with Tair. As a meas-
ure of light energy transmittance, DIFN is an indirect meas-
ure of transmitted solar radiation, a key driver of the thermal
microclimate. Areas with little overstory cover or lesser topo-
graphic shading are exposed to greater solar insolation, which
results in higher maximum air temperatures than in those
areas with dense canopies or, depending on channel orienta-
tion, strong topographic relief. In our study, reaches with
steep streamside slope tended toward greater DIFN values
than reaches with moderate streamside slope, indicating a
greater amount of light reaching the understory, which re-
sulted in higher percent cover of understory vegetation layers
at reaches with steep streamside slope. Microclimate re-
sponds to whichever source of cover predominates, showing
an increased sensitivity to shrub cover as overstory cover de-
creases. Thus, covariates describing understory vegetation
cover are more important in reaches with large DIFN values.
In our study, reaches with large DIFN values coincided with
the reaches that have steep streamside slopes. However, this
may not be true in general.

Kriging
KED outperformed OK and UK at almost all reaches, and

HAS and DTS were the most important covariates in the
models. KED assumes a linear relationship between the vari-
able of interest and the covariate. If this assumption is not
met, transformations of the covariate should be tested (Bour-
ennane et al. 2000). Log transformations of DTS and HAS
improved the predictions of Tair in terms of RMSE for some
of the sites. An improvement in the linear relationship of the
log-transformed variable with Tair was generally reflected in
an increase of Pearson’s correlation coefficient (Table 3).
Hudson and Wackernagel (1994) suggested that covariates

should only be used as external drift if they are highly line-
arly correlated with the variable of interest. If this is not the
case, co-kriging, where a model for the cross-variograms be-
tween the different variables is fitted, should be preferred
over KED.
In our study, DTS outperformed HAS as external drift

when channels were more steeply incised (Tables 1 and 2).
This suggests that the linear relationship between Tair and
DTS tended to be stronger on steep sites (streamside slope ≥
30%) than the relationship between Tair and HAS; the oppo-
site was true for sites with gentler streamside slope (<30%).
We found that including auxiliary information with a KED

model improved the predictions compared with OK and UK
models, consistent with the results reported by Goovaerts
(2000), Bourennane and King (2003), and van de Kassteele
et al. (2009). Of the available covariates, DTS and HAS and
their log transformations generally had the largest correlation
coefficients with Tair. Bourennane and King (2003) examined
whether it is necessary to use all available covariates in the
KED models or whether the use of the most correlated cova-
riate is sufficient. For their data, they found that using two
external drifts resulted in more precise predictions of the var-
iable of interest compared with using only one external drift.
We found that including more than one external drift can im-
prove predictions in terms of RMSE. However, for some of
our reaches, the incremental improvement was so small that
one may prefer to choose the more parsimonious model with
only one external drift. At points where observations are
sparse, predictions can be improved substantially by the in-
clusion of covariates (Bourennane et al. 2000; van de Kas-
steele et al. 2009).
UK with quadratic trend resulted in very good Tair predic-

tions in terms of RMSE for two sites (OM36 and TH75) that
exhibited a very typical Tair pattern for all four transects,
where Tair was smallest at the stream center and constantly
increased with increasing DTS. This pattern was not as dis-

Table 4. Root mean square error (RMSE) of the mean maximum air temperature for the eight stream reaches. See Table 1 for
descriptions of reaches.

% RMSE

Kriging
method Trend BL13 KM17 KM18 KM19 KM21 OM36 TH46 TH75
OK 3.279 1.938 1.524 2.364 5.759 2.313 3.437 2.632
UK quadratic 3.314 1.989 1.764 2.361 5.692 2.248 3.722 2.457
KED ~coords + HAS 2.836 1.935 1.445 2.158 5.188 2.322 3.559 2.909
KED ~coords + HAS + LAI 3.03 1.941 1.470 2.204 5.020 2.297 3.691 2.832
KED ~coords + HAS + DIFN 2.966 1.955 1.504 2.233 5.077 2.323 3.303 2.82
KED ~coords + HAS + TPH 2.783 1.925 1.486 2.255 5.275 2.294 3.530 3.03
KED ~coords + HAS + Tall shrubs 2.996 1.955 1.482 2.222 5.241 2.248 3.448 2.78
KED ~coords + HAS + Ferns 2.917 1.945 1.456 2.226 4.796 2.281 3.485 2.809
KED ~coords + DTS 2.574 1.988 1.618 2.243 5.463 2.275 3.606 2.501
KED ~coords + DTS + DIFN 2.600 2.003 1.626 2.409 5.465 2.291 3.020 2.521
KED ~coords + DTS + TPH 2.566 1.97 1.626 2.407 5.544 2.269 3.592 2.765
KED ~coords + DTS + Tall shrubs 2.728 2.004 1.628 2.387 5.504 2.227 3.515 2.494
KED ~coords + DTS + Ferns 2.602 2.005 1.615 2.39 5.105 2.245 3.552 2.540

Note: Kriging methods: OK, ordinary kriging; UK, universal kriging; KED, kriging with external drift. DTS, distance to stream (m); HAS,
height above stream (m); LAI, leaf area index (m2 foliage/m2 ground); DIFN, proportion visible sky; BA/ha, basal area per hectare (m2/ha); TPH,
trees per hectare; coords, coordinates. Values in bold and underlined, bold, and bold italics indicate smallest, second smallest, and third smallest
RMSE for a site, respectively. For BL13 and KM19, DTS = ln(DTS + 0.1); for BL13, KM17, KM18, and KM21, HAS = ln(HAS + 5).
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tinct on the other sites. UK with a quadratic trend was suffi-
cient for predicting Tair when this type of pattern was ob-
served. However, in absence of this pattern, UK is expected
to perform worse than KED, because any spatial trend will
be revealed best by defining perpendicular distance to the
stream rather than distance to an arbitrary, fixed point. OK
worked well when no obvious trend of Tair existed (e.g.,
KM17), so that the use of a global mean for the predictions
was adequate.
We examined only the relationship of the available covari-

ates with Tair. However, other microclimate variables such as
soil temperature and relative humidity are also of importance
for ecological processes, habitat suitability, and biodiversity.
Mean minimum relative humidity showed high negative cor-
relation with Tair, with Pearson’s correlation coefficient rang-
ing between –0.68 and –0.91 for six of the sites. Smaller
correlation, but still significant at the 5% level, was observed
at the remaining two sites (–0.27 and –0.48). Whether the
different microclimate variables respond differently to the
available covariates and whether the relationships among the
microclimate variables could be used to reduce sampling ef-
forts could be examined. It is, for example, of interest
whether relative humidity has to be measured at all locations
where air temperature is measured.

Optimization of sampling locations
Because of the large variability among the eight reaches,

the efficiency gain of optimizing the sampling locations com-
pared with a systematic sample was not identical for all eight
reaches. Nevertheless, the results show that the optimization
increased the efficiency in terms of the mean kriging var-
iance most for smaller sample sizes (Fig. 2). This is due to
WMSD and KVAR for smaller sample sizes resulting in a
high density of sample points on three of the four transects,
whereas the sample points for SYST were evenly spread
across all four transects, thus not necessarily covering the
whole range of the transects. With increasing sample size m,
SYST improved compared with WMSD and KVAR, because
SYST resulted in a sample being evenly spread across all four
transects while providing a density of sample points along
each transect similar to WMSD and KVAR, for which sam-
ple points were added to the fourth transect with increasing
m. This suggests that for smaller sample sizes, it is more effi-
cient to focus the sampling effort on fewer transects than to
spread the samples across multiple transects.
Both KVAR and WMSD tended to result in fewer trans-

ects with a denser distribution of sample points than SYST,
which can be attributed to the presence of anisotropy in the
Tair data, presumably due to the variability from stream to up-
slope being greater than the variability along the stream. Ani-
sotropy has considerable influence on the optimized sample
patterns (van Groenigen et al. 1999). When the data are sta-
tionary, optimization of sampling locations based on the krig-
ing variance typically results in a sample pattern similar to a
triangular equilateral grid, whereas the optimized sample pat-
terns in the presence of anisotropy lean towards larger distan-
ces between transects than between points within a transect
(van Groenigen et al. 1999).
The KVAR method of optimization of sample patterns de-

scribed here demands prior knowledge of the spatial variation
model (variogram), implying that the optimized sample pat-
terns are only optimal if the model assumptions used for the
kriging methods are valid (Brus and Heuvelink 2007). We
estimated the partial sill, range, and nugget parameters for
each reach based on all observations available for the reach
(50 ≤ n ≤ 65) and assumed these parameter estimates to be
correct. At least 50 observations are recommended for vario-
gram estimation, but around 300 observations are preferred
(Webster and Oliver 2001, p. 85). Therefore, it can be as-
sumed that our kriging results and optimized sample patterns
could be improved if more resources were put into estimating

Fig. 2. Relative efficiency of the sample patterns KVAR (solid cir-
cles), WMSD (open squares), RAND (open squares), and SYST
(solid squares) for sample sizes m = 15 to 25 for the eight stream
reaches. See Table 1 for descriptions of stream reaches.
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the variogram parameters. However, because parameter esti-
mation was not the focus of this study, we did not explore
many different models.
Optimization based on the kriging variance can only be

applied if a variogram can be assumed by either estimation
from sampled data or inference from earlier surveys. If this
is not possible, other optimization criteria (e.g., minimizing
the mean of shortest distance criterion, WMSD criterion)
that do not require the knowledge of variogram parameters
may provide better optimization results (van Groenigen et al.
1999). KVAR had slightly larger RE values than WMSD for
five of the reaches and smaller RE values than WMSD for
the remaining three reaches. This confirms that optimization

criteria not dependent on variogram estimation such as the
WMDS criterion can be valid alternatives to methods such
as KVAR (Fig. 2).
The kriging models did not converge for some sample pat-

terns with sample sizes m < 15, and we wanted to have at
least as many evaluation points (n – m) as sampling points
(m). Therefore, we were limited to examining sample sizes
ranging between m = 15 and 25 because of the small data
sets for each of the eight reaches (50 ≤ n ≤ 65). Hence, this
study does not allow information about the performance of
the different sample patterns and kriging methods for sample
sizes larger 25 or smaller 15. Cost models of the different
sample patterns were not examined.

Fig. 3. SYST, KVAR, and WMSD sample patterns for stream reach BL13 for m = 15, 19, 22, and 25: solid square, sample location within 15
m of stream; open square, distance to stream of sample location is greater than 15 m.
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Conclusions
We show the potential of using geostatistical tools for pre-

dicting microclimate variables, in particular Tair, in forested
riparian zones. Strong correlations were found between Tair
and DTS and HAS. Statistically significant correlations be-
tween Tair and canopy cover variables and over- and under-
story vegetation attributes have been found for some reaches.
However, these correlations are not consistent across reaches.
KED provided better results in terms of RMSE than OK or

UK when either DTS or HAS were used as external drift.
HAS and DTS or their log transformations were the most
useful covariates for KED. For steep sites (>30%), DTS was
more important as external drift than HAS. The opposite was
true for sites with slope less than 30%. Using more than one
external drift by including covariates that describe the percent
cover of the over- or under-story vegetation can improve the
prediction results, although consistent improvements across
reaches were not shown. Whichever source of cover predom-
inates at a reach explains the most variation in the model.
The kriging variance and the WMSD criterion were used

to optimize the sample pattern with the simulated annealing
algorithm. We found that the KVAR- and WMSD-optimized
sample patterns have the potential to improve the efficiency
of predicting Tair in terms of the mean kriging variance com-
pared with systematic sample patterns (SYST). This is espe-
cially true for smaller sample sizes (m < 20), which can be
attributed to denser samples along a subset of the four trans-
ects for KVAR and WMSD compared with less intense sam-
ples along all four transects for SYST.
The variogram parameters were estimated with 50 to 65

data points for the eight reaches. Because the performance of
the kriging models and the KVAR optimization strongly de-
pend on the estimated variogram parameters, it can be ex-
pected that improved variogram estimation based on more
data points may improve the results over those presented.
The findings of our study can help researchers attempting

to monitor and map microclimate conditions in riparian areas
in choosing relevant auxiliary information and optimal sam-
ple patterns for long-term monitoring efforts.
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