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Abstract: Understory vegetation communities are critical components of forest ecosystems. As a result, the
importance of modeling understory vegetation characteristics in forested landscapes has become more apparent.
Abundance measures such as shrub cover are bounded between 0 and 1, exhibit heteroscedastic error variance,
and are often subject to spatial dependence. These distributional features tend to be ignored when shrub cover
data are analyzed. The beta distribution has been used successfully to describe the frequency distribution of
vegetation cover. Beta regression models ignoring spatial dependence (BR) and accounting for spatial depen-
dence (BRdep) were used to estimate percent shrub cover as a function of topographic conditions and overstory
vegetation structure in riparian zones in western Oregon. The BR models showed poor explanatory power
(pseudo-R2 � 0.34) but outperformed ordinary least-squares (OLS) and generalized least-squares (GLS)
regression models with logit-transformed response in terms of mean square prediction error and absolute bias.
We introduce a copula (COP) model that is based on the beta distribution and accounts for spatial dependence.
A simulation study was designed to illustrate the effects of incorrectly assuming normality, equal variance, and
spatial independence. It showed that BR, BRdep, and COP models provide unbiased parameter estimates,
whereas OLS and GLS models result in slightly biased estimates for two of the three parameters. On the basis
of the simulation study, 93–97% of the GLS, BRdep, and COP confidence intervals covered the true parameters,
whereas OLS and BR only resulted in 84–88% coverage, which demonstrated the superiority of GLS, BRdep,
and COP over OLS and BR models in providing standard errors for the parameter estimates in the presence of
spatial dependence. FOR. SCI. 57(3):212–221.
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I N THE PAST DECADES THE IMPORTANCE of managing
wildlife habitat, enhancing biodiversity, and protecting
water quality in forest ecosystems while managing for

sustainable timber production has become evident. Under-
story vegetation communities play a major role in all forest
ecosystems (Suchar and Crookston 2010). In temperate
forest ecosystems, most of the plant biodiversity is con-
tained within the understory vegetation layers (Halpern and
Spies 1995, Weisberg et al. 2003). The understory vegeta-
tion not only contributes to biodiversity and protects against
erosion but also influences nutrient cycles and provides
forage and cover for many wildlife species (Weisberg et al.
2003, Suchar and Crookston 2010). To use understory veg-
etation characteristics as biodiversity indicators or to assess
habitat potential, predictive models for understory vegeta-
tion characteristics are needed (Suchar and Crookston
2010).

Predictions of understory vegetation characteristics such
as abundance are inherently difficult. Vegetation abundance
is often expressed as number of plant individuals, number of
binary occurrences (presence/absence), plant cover, or bio-
mass per unit area (Chen et al. 2008a), with plant cover
being the most frequently used measure of abundance in
vegetation surveys (Chen et al. 2008b). Typically, plant

cover is visually assessed, resulting in a measure that is
either continuous or ordinal if plant cover classes (e.g.,
Braun-Blanquet 1964 or Daubenmire 1959) are used
(Damgaard 2009). Although plant cover is frequently col-
lected in vegetation surveys, the theoretical and statistical
bases underlying cover measures are not well understood
(Chen et al. 2006). Vegetation abundance data are charac-
terized by distributional features (e.g., bounded between 0
and 1, heteroscedastic error variance) that do not conform to
the assumptions of standard statistical procedures
(Damgaard 2009). The beta distribution can be appropriate
for modeling cover data because it adequately describes the
frequency distribution of cover for various individual spe-
cies or plant communities (Pielou 1977, Bonham 1989,
Chen et al. 2006, 2008a, 2008b, Damgaard 2009). Most of
the work using the beta distribution has been done for
examples of grasslands and crop fields (e.g., Chen et al.
2006, 2008a, 2008b). In recent years, beta regression has
been applied in a variety of fields including forestry. For
example, Korhonen et al. (2007) successfully estimated
forest canopy cover with beta regression. However, to the
authors’ knowledge, no work exists that applies the beta
distribution to describe the frequency distribution of under-
story vegetation cover in forested ecosystems.
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Forest ecologists and wildlife biologists working in tem-
perate conifer forests are particularly interested in modeling
cover and distribution of shrubs. Shrubs comprise a major
component of understory vegetation and provide critical
food and cover resources for many wildlife species (Hagar
2007). Given the importance of shrubs to wildlife, the
ability to accurately quantify and map shrub cover would
greatly facilitate habitat management (Martinuzzi et al.
2009), but measurement of shrub cover is very laborious
and costly. Because riparian zones include some of the most
productive wildlife habitats in forest lands of western Ore-
gon and Washington (Anthony et al. 1987), predictive mod-
els of shrub cover in riparian zones are of special interest.

The objectives of this article are to 1) use beta regression
(with and without accounting for spatial dependence) for
modeling shrub cover in riparian forests along headwater
streams as a function of topographic conditions and over-
story vegetation structure, 2) model shrub cover using a
copula model that accounts for spatial dependence, 3) com-
pare parameter estimates from five model types: beta re-
gression (with and without dependence structure), copula
models, and ordinary least-squares (OLS) models with
logit-transformed response (with and without dependence
structure), and 4) by means of a simulation study a) evaluate
the performance of the five model types in terms of the
parameter estimates they provide and b) demonstrate the
importance of modeling existing spatial dependence.

Beta Distribution and Beta Regression

The beta distribution is a two-parameter distribution that
can accommodate various types of plant cover frequency
distributions with “J,” “L,” “one-peak,” “U,” and “rectan-
gular” shapes (Chen et al. 2006, Smithson and Verkuilen
2006). The beta distribution has been used in statistical
ecology for many years (Chen et al. 2006) and is defined as
follows:

f� y; p, q� �
�� p � q�

�� p���q�
yp�1�1 � y�q�1, (1)

where 0 � y � 1, p, q � 0, and �(�) denotes the gamma
function. p and q are shape parameters, with p pulling
density toward 0 and q pulling density toward 1 (Smithson
and Verkuilen 2006). Ferrari and Cribari-Neto (2004) pro-
posed a different parameterization of the beta probability
density function (pdf), by setting � � p/(p � q) and � � p
� q (i.e., p � �� and q � (1 � �)�, where 0 � � � 1 and
� � 0:

f� y; �, �� �
����

��������1 � ����
y���1�1 � y��1�����1.

(2)

The shape parameters p and q as well as the parameters �
and � can be used to express the mean and variance of y,
respectively,

E�y� �
p

p � q
� �, (3)

Var�y� �
pq

�p � q�2�p � q � 1�
�

��1 � ��

�1 � ��
. (4)

Using the parameterization of the beta distribution de-
scribed in Equation 2, Ferrari and Cribari-Neto (2004) in-
troduced a beta regression model similar to the approach for
generalized linear models (McCullagh and Nelder 1989),
except that the distribution of the response is not a member
of the exponential family. In the extended generalized linear
model approach, y1, …, yn are independent random vari-
ables with each yi following the density in Equation 2 with
mean �i and precision �. The beta regression model is
obtained as follows:

g��i� � xi
T� � �i, (5)

where xi � (xi1, …, xik)
T is a vector of k explanatory

variables, � � (�1, …, �k)
T is a k 	 1 vector of unknown

regression parameters (k � n), �i is a linear predictor, g(�) is
a strictly increasing and twice differentiable link function
that maps (0, 1) into the real line �, and T is the transpose
of a vector. A variety of link functions g(�) are available, but
the logit link g(�) � log(�/(1 � �)) is particularly useful,
in which case

�i �
1

1 � exp(�xi
T�)

, (6)

with everything as defined above.
Measurements such as percent cover take on values on

the open interval (0, 1), and the influence of explanatory
variables on continuous responses bounded between 0 and 1
can be investigated with the beta regression proposed by
Ferrari and Cribari-Neto (2004). OLS regression models
with logit-transformed response variables have traditionally
been used for this type of data. However, the logit-
transformed OLS approach has been questioned, and Brehm
and Gates (1993) suggested that the beta distribution should
be favored over the normal distribution because it is theo-
retically and statistically more appropriate. Beta regression
does not require the response to be transformed to take on
values on the real line and therefore allows parameter in-
terpretation in terms of the response in the original scale
(Espinheira et al. 2008). The investigator can chose the link
function, and if a logit link function is used to transform the
mean response, the regression parameters can be interpreted
in terms of the odds ratio, which is not possible for param-
eters from OLS regression, which uses a logit-transformed
response (Ferrari and Cribari-Neto 2004). Nonconstant re-
sponse variances are naturally accommodated into the beta
regression model, because the variance of yi is a function of
�i (Equation 4) and, hence, a function of the values of the
explanatory variables (Equation 6) (Ferrari and Cribari-
Neto 2004). The underlying assumption of the beta regres-
sion model is that the response follows the beta law (Ferrari
and Cribari-Neto 2004), hence allowing asymmetry of the
response distribution (Espinheira et al. 2008). Measures on
the (0, 1) interval typically display asymmetry; thus, infer-
ence based on the normality assumption of OLS with a
logit-transformed response can be misleading (Ferrari and
Cribari-Neto 2004). The logit transformation used in OLS
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models will mitigate asymmetry but will not remove pro-
nounced asymmetry. Kieschnick and McCullough (2003)
compared several regression models for proportions ob-
served on the open interval (0, 1) using economics and
presidential election data and preferred the use of beta
regression over the other regression models examined (lin-
ear and nonlinear OLS, additive logistic normal distribution,
censored normal distribution, and simplex distribution).

Copula Models

A copula is a function that joins univariate marginal
distributions into a multivariate distribution function. In
other words, copulas are multivariate distribution functions
whose one-dimensional margins are uniform on the interval
(0, 1) (Nelsen 2006, p. 1). The multivariate Gaussian copula
generalizes a multivariate normal dependence structure to
non-normal marginals. If y1, …, yn are random variables
with continuous marginal cumulative distribution functions
(cdf’s) Fi and pdf’s fi and 
 is a non-negative definite matrix
with diagonal entries equal to 1, the multivariate Gaussian
copula is the joint distribution function of y1, …, yn with
specified marginals:

C�y; 
� � �
���1
F1�y1��, ..., ��1
Fn�yn���, (7)

where � is the standard normal cdf and �
 is the multivar-
iate normal cdf with covariance matrix 
. The expression
��1{Fi(yi)} represents a normal transformation of yi as a
consequence of the probability integral transformation (Ca-
sella and Berger 2002, p. 54): Fi(yi) is uniform on (0, 1) and
applying the inverse standard normal cdf ��1 to a uniform
yields a standard normal random variable. Differentiating
C(y1, …, yn) yields the joint pdf,

c� y; 
� � �
��1/ 2exp� �
1

2
zT�
�1 � In�z��

i�1

n

fi�yi�,

(8)

where z � [��1{Fi(yi)}, …, ��1{Fi(yi)}]T and In denotes
the n 	 n identity matrix.

The copula correlation matrix 
 models the correlation
among the elements of z, which induces dependence among
the yi. Unless the yi are themselves normally distributed, 

is not their correlation matrix. If y1, …, yn are spatially
referenced, the copula correlation matrix 
 can be given a
spatial form. An exponential model with “decay” parameter

	 is assumed so that the ijth element of the correlation
matrix,

�ij�	 � � �exp��hij	 �,
1,

i 
 j
i � j (9)

where hij is the distance between the locations of yi and yj

and 	 � 0. With this, the spatial Gaussian copula allows
bringing non-normal distributions into the Gaussian geo-
statistical framework, where correlation completely de-
scribes dependence (Madsen 2009). When 	 is large, 
 is
approximately the identity matrix and the yi are approxi-
mately independent. Decreasing 	 corresponds to increasing
the spatial dependence between the yi. Therefore, small 	
values indicate strong spatial dependence, whereas large 	
values indicate weak spatial dependence. The scale of 	
depends on the minimum distance between observations in
a given study.

Let y1, …, yn be beta random variables with pdfs as in
Equation 2, mean �i (Equation 6), and precision parameter
�. Maximum likelihood estimates of �, �, and 	 are ob-
tained by numerically maximizing the log of expected like-
lihood with respect to �, �, and 	. From 8, the log expected
likelihood is

log L��, �, 	; y�

� log�����1/2exp��
1

2
zT���1 � In�z��

i�1

n

fi�yi��, (10)

where y is the data vector, z � [��1{Fi(yi)}, …,
��1{Fi(yi)}]T, and fi is the beta pdf. Variance estimates are
obtained by numerically approximating the Hessian matrix
H at the maximum likelihood estimates.

The purpose of this analysis was to estimate the regres-
sion parameters �. Therefore, the precision parameter (�)
and covariance parameter (	) were considered as nuisance
parameters and only used to account for dispersion and
spatial dependence, respectively.

Methods
Case Study Data

Understory percent cover data of headwater streams
were collected in 2006 on four sites managed by the Bureau
of Land Management Density Management Study (DMS) in
the Oregon Coast Range (Table 1) (for DMS details, see
Cissel et al. 2006) as part of a larger study (see Marquardt

Table 1. General information on the four headwater sites

Site name
Reach

no.
BLM

district Latitude Longitude
Elevation

(m) Buffer

Stream
slope
(%)

Streamside
slope
(%)

Aspect
of channel

orientation (°)

Keel Mountain 18 Salem 44°31�41.0�N 122°37�55.0�W 745 Two-site potential
tree heights

20 21 269

Bottom Line 13 Eugene 43°46�20.0�N 123°14�11.0�W 295 Two-site potential
tree heights

18 66 323

Ten High 75 Eugene 44°16�50.0�N 123°31�06.0�W 520 Variable width 60 40 173
OM Hubbard 36 Roseburg 43°17�30.0�N 123°35�00.0�W 510 Variable width 19 40 71

BLM, Bureau of Land Management.
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2010). Site locations ranged from west of Corvallis to north
of Roseburg, Oregon, USA (range 43°17�30�N to
44°31�41�N and 122°37�5�W to 123°35�00�W). Stands
were 40–70 years old when density and buffer treatments
were applied. A buffer, which is a forested strip parallel to
the stream, of width equal to the height of two site potential
trees (146-m slope distance from the stream) was left on
each side of the stream at two sites. At the remaining two
sites a variable width buffer was applied to the streams,
which had a minimum of 15-m slope distance from the
stream and fluctuated based on sensitive areas (e.g., areas
prone to landslides or areas with threatened species present)
(Cissel et al. 2006). The four sites used in this study were
moderate density retention sites for which 60–65% of the
stand was thinned to 200 trees/ha (TPH), 10% was left in
circular leave islands, and 15–20% was left unthinned in
riparian buffers (Cissel et al. 2006, Chan et al. 2004). More

detailed information can be found in Cissel et al. (2006,
Appendix E).

A sampling block (72 m 	 72 m horizontal distance) was
randomly located along one headwater stream at each site.
One 72-m axis of the block was oriented approximately
parallel to the stream; the center of the block along this axis
will be referred to as the center line. The second axis
extended approximately 36 m (horizontal distance) upslope
and perpendicular to the center line on each side of the
stream. At the 32- and 68-m marks of the center line,
understory vegetation plots were installed. Transects with
3-m spacing (horizontal distance) were laid out perpendic-
ular to the center line at those points. In addition, transects
with 10-m spacing (horizontal distance) were laid out per-
pendicular to the center line at two random points between
0 and 72 m at each site (Figure 1). The data that were
collected along the four transects at either 3- or 10-m
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Figure 1. Locations of the vegetation plots on the four sites. Open circles, vegetation plot location, size
proportional to observed percent shrub cover within site; dotted line, center line; solid circles: observed
stream location; solid line: spline interpolated stream course.
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spacing are described in detail in the following. More de-
tailed information on the sampling design can be found in
Marquardt (2010).

At each sample point, percent cover of shrubs (perennial
woody plants �1.4 m) was visually determined to the
nearest 5% on 1 m 	 1 m plots. At the same points, the
overstory density measures TPH and basal area per hectare
(BA/ha in m2/ha) were calculated on the basis of a variable
radius plot with basal area factor 8. For each plot center, the
horizontal distance to the stream (DTS in m) and the height
above the stream (HAS in m) was recorded. Leaf area index
(LAI in m2 foliage/m2 ground) was measured at each plot
center using hemispherical detection of canopy light trans-
mittance (plant canopy analyzer, model LAI-2000, Li-Cor
Biosciences, Lincoln, NE) (Table 2).

Simulation Study Data

To illustrate the consequences of ignoring violations of
the assumptions of normality, equal variance, and spatial
independence, we simulated 500 data sets of size n � 248
to mimic the observed shrub data. Spatial locations, DTS,
and LAI agree with the actual data from the case study
described above. We replaced each observed response with
a simulated response from a beta distribution with mean and
variance as provided in Equations 3 and 4 where

�i �
1

1 � exp�� ��0 � �1DTSi � �2LAIi��
. (11)

True parameters are (�0, �1, �2, �) � (�0.34, 0.037,
�0.24, 2.6), approximately the estimates from fitting the
above model to the case study data.

We achieve spatial dependence in the simulated re-
sponses by first simulating spatially dependent standard
normal random variables Z with a covariance matrix deter-
mined by the exponential model given in Equation 9, where
hij is the distance between locations i and j and 	 � 0.31,
approximately the estimate from the copula model fit to the
case study data. Each normal Z is transformed to a beta
response Y as Yi � Fi

�1[�(Zi)], where � is the standard
normal cdf and Fi

�1 is the beta cdf with mean and variance
as given in Equations 3 and 4, respectively. This transfor-
mation reverses the probability integral transformation of
Equation 7 (Casella and Berger 2002, p. 54). In addition to
	 � 0.31, which was obtained as an estimate from the case
study data, we simulated 500 data sets of size n � 248 as
described above for a variety of 	 values (0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, infinity), ranging from

	 � 0.01 � strong spatial dependence to 	 � infinity � no
spatial dependence.

Models for Case Study Data

Beta regression (BR) models were fit to a variety of
models with different sets and combinations of explanatory
variables. Explanatory variables described the topographic
conditions, DTS, HAS, slope, aspect, and slope-aspect
transformations [slope 	 cosine(aspect), slope 	 sine(as-
pect)], as well as the overstory vegetation structure, LAI,
BA/ha, and TPH. Interactions of DTS and HAS with LAI
were also included in the models. From these models, the
three models with the smallest Bayesian information crite-
rion (BIC) values were selected for further analysis. The
pseudo-R2 value, which is the squared correlation of the
linear predictor and link-transformed response, was calcu-
lated and compared. Because percent shrub cover included
the extremes 0 and 1, the following transformation that is
commonly used in practice (Smithson and Verkuilen 2006)
was used:

y* � � y�n � 1� � 0.5�/n, (12)

where n is the sample size.
OLS regression with a logit-transformed response and

copula (COP) models were fit using the sets of explanatory
variables of the three models that were picked based on the
BR. To account for the dependence structure due to the
sampling design, an exponential spatial covariance structure
was incorporated into the OLS and BR models, which
resulted in a generalized least squares (GLS) and a BR
model with exponential dependence structure (BRdep),
respectively.

For each model type (OLS, GLS, BR, BRdep, and COP)
and set of explanatory variables (1–3), the mean squared
prediction error (MSPE) and absolute bias (AB) were
reported:

MSPE � �
i�1

n �predicted � observed�2

n
, (13)

AB � �
i�1

n �predicted � observed�

n
, (14)

Analysis of Simulation Study Data

OLS, GLS, BR, BRdep, and COP models were fit to the
500 simulated data sets for each 	 value using DTS and LAI

Table 2. Summary of topographic and overstory vegetation attributes used in the case study

Variable Minimum Mean Maximum SD

% shrub cover 0.008 0.37 0.992 0.27
DTS (m) 0.0 18.9 43.5 11.2
HAS (m) �0.4 6.9 23.4 5.4
LAI (m2/m2) 1.21 3.86 6.53 1.21
BA/ha (m2/ha) 0 63.29 208 39.07
TPH 0 597 4118 534
Slope (%) 1 38 88 19

DTS, horizontal distance to stream; HAS, height above stream; LAI, leaf area index; BA/ha, basal area per hectare; TPH, trees per hectare.
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as explanatory variables. On the basis of the 500 estimates
for each parameter, the bias of the parameter estimates was
calculated for each method:

Bias �
�l�1

500
�̂kl

500
� �k, (15)

where �k is the true parameter with k � 0, 1, 2 and �̂kl is the
estimate for �k based on the lth simulated data set with l �
1, …, 500.

The confidence interval for each parameter estimate was
calculated as

�̂kl � 1.96 � SE��̂kl�, (16)

where SE(�̂kl) is the standard error of �̂kl. For each method,
the percent coverage of the true parameter was calculated
based on the confidence intervals. The regression parame-
ters � have different interpretations in the OLS and GLS
models than in the BR, BRdep, and COP models (for
details, see Discussion). Equation 15 of Espinheira et al.
(2008) can be used to calculate the OLS/GLS parameters in
terms of (�0, �1, �2) � (�0.34, 0.037, �0.24) from the BR,
BRdep, and COP models. The vector of true parameters
used to calculate bias and confidence coverage for the OLS
and GLS models will be referred to as � and equals (�0, �1,
�2) � (�0.505, 0.056, �0.369).

BRdep and GLS models were fit with PROC GLIMMIX
in SAS (SAS Institute, Inc. 2008). All other analyses were
performed in R 2.10.1 (R Development Core Team 2009),
and the beta regression was implemented with the betareg R
package version 2.2-2 (Cribari-Neto and Zeileis 2010).

Results
Case Study

The preferred BR model (model 1) with regards to BIC
(�118.77) had only two explanatory variables (DTS and
LAI). The model with the second smallest BIC value
(�116.28) also included slope, aspect, slope-aspect trans-
formations, HAS, and the HAS 	 LAI interaction as ex-
planatory variables (model 2). The model with the third
smallest BIC value (�114.92) was like model 2 without
HAS and the HAS 	 LAI interaction as explanatory vari-
ables (model 3). The BIC values for the corresponding COP
models were �141.83, �131.32, and �128.13, respec-
tively. The OLS and GLS models had large positive BIC
values corresponding to 999.03, 1042.93, and 1051.23 for

OLS models 1 through 3, respectively, and 949.22, 977.29,
and 975.52 for GLS models 1 through 3.

Pseudo-R2 values for the three BR models increased with
complexity of the model with 0.26 for BR1, 0.30 for BR3,
and 0.34 for BR2. Addition of BA/ha and TPH as explan-
atory variables to the models increased the pseudo-R2 val-
ues but decreased the BIC values. DTS explained more
variation than HAS by itself. DTS and HAS were linearly
correlated (correlation coefficient � 0.73). For the simu-
lated data with 	 � 0.31, the pseudo-R2 values ranged from
0.09 to 0.39 with mean 0.22.

MSPE was largest for OLS and GLS models for all three
sets of explanatory variables, whereas the MSPE values
were slightly smaller and essentially the same for BR,
BRdep, and COP models (Table 3). For all five model types,
MSPE was largest for the simplest model (model 1) and
smallest for the most complex model (model 2) (Table 3).
BR, BRdep, and COP models provided unbiased predictions
for all three sets of explanatory variables, whereas the
predictions based on OLS and GLS exhibit a negative bias
(Table 3).

Simulation Study

Based on the simulated data with 	 � 0.31, the OLS and
GLS models provided unbiased parameter estimates for �0

and biased parameter estimates for �1 and �2, whereas the
BR, BRdep, and COP models provided unbiased estimates
for all three parameters (Table 4). The OLS and BR models
provided the worst confidence coverage of the true param-
eters, ranging between 84 and 89%. For the GLS model, the
confidence coverage is 97% for �0 and 93 and 94% for �1

and �2, respectively, whereas 94–96% of the confidence
intervals covered the true parameter for the BRdep and COP
models (Table 4).

For very strong and very weak dependence, the BRdep
model occasionally had convergence issues. For example,
for 	 � 0.01 (very strong dependence), 5.4% of the simu-
lations did not converge, and for 	 � 1 (weak dependence),
9.4% of simulations did not converge. The percent coverage
of the confidence intervals is reported for the simulated data
sets for which the BRdep model converged.

The GLS, BRdep, and COP models provided approxi-
mately 95% confidence coverage for all three parameter
estimates for 	 
 0.1. For 	 � 0.01 or 	 � 0.05, which
correspond to very strong spatial dependence, GLS, BRdep,

Table 3. Mean squared prediction errors (MSPE) and absolute bias (AB) for each model type and three sets of explanatory
variables

Model

MSPE AB

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

OLS 0.064 0.051 0.056 �0.0579 (P � 0.001)* �0.0463 (P � 0.001) �0.0532 (P � 0.001)
GLS 0.063 0.051 0.056 �0.0556 (P � 0.001) �0.0409 (P � 0.004) �0.0516 (P � 0.001)
BR 0.056 0.048 0.050 �0.0014 (P � 0.927) �0.0006 (P � 0.965) �0.0017 (P � 0.908)
BRdep 0.056 0.047 0.050 0.0014 (P � 0.924) 0.0027 (P � 0.847) 0 (P � 0.998)
COP 0.056 0.048 0.051 0.0029 (P � 0.846) 0.0055 (P � 0.693) 0.0021 (P � 0.886)

Model 1 explanatory variables: DTS, LAI; model 2 explanatory variables: DTS, LAI, HAS, HAS 	 LAI, slope, aspect, slope-aspect transformations; model
3 explanatory variables: DTS, LAI, slope, aspect, slope-aspect transformations.
* P value for a t test testing whether the bias is significantly different from 0.
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and COP models tended to result in lower confidence cov-
erage of 77–94%, with GLS having the smallest confidence
coverage for �1 and �2 among the three models. With fairly
high confidence coverage of 97% for �1, the COP model
provided an exception when 	 � 0.01 (Figure 2).

When spatial dependence was strong, the OLS and BR
models provided poor confidence coverage for all three
parameter estimates. The confidence coverage increased
with increasing 	, corresponding to decreasing dependence,
and leveled off between 92 and 94% confidence coverage at
approximately 	 � 0.6. The confidence coverage of the
OLS model compared with that of the GLS model tended to
be slightly larger for �0, slightly smaller for �1, and iden-
tical for �2 (Figure 2).

Discussion

Pseudo-R2 is a measure of explained variation (Ferrari
and Cribari-Neto 2004), and, hence, the low pseudo-R2

values of the BR models, ranging from 0.26 to 0.34, sug-
gested a lot of unexplained variation, which is consistent
with previous studies. It has been shown repeatedly that
predicting percent shrub cover in forested ecosystems is
inherently difficult. Suchar and Crookston (2010) reported
adjusted R2 values of 0.22 and 0.24 for their percent shrub
cover models. Kerns and Ohmann (2004) achieved R2 val-
ues between 0.14 and 0.49 for percent shrub cover models
for different ownership groups. Even though general trends
such as increases in percent shrub cover with increases in
DTS and HAS and decreases in percent shrub cover with
increases in LAI, BA/ha, and TPH are apparent in the data,
the linear correlation coefficients are fairly small (� �0.4�)
due to high variability in the data. Suchar and Crookston
(2010) argue that shrub and herb cover are more heteroge-
neous than overstory cover attributes and that finer scale
environmental conditions such as soil nutrient content,
moisture, and allelophatic effects might be needed to effec-
tively predict understory characteristics. Therefore, explan-
atory variables at a finer scale than those available in this
study might be needed to improve the amount of explained
variation for percent shrub cover models. Light detection
and ranging (LiDAR)-derived metrics have successfully
been used for mapping the presence/absence of understory
shrub species in forested landscapes (Martinuzzi et al.
2009). The use of LiDAR metrics for modeling percent
shrub cover in forested landscapes should be explored.
Because LiDAR technology enables precise three-dimen-

sional maps of vegetation structure, it may be possible to
simply obtain census measurements of understory cover by
using LiDAR measurements.

The three sets of explanatory variables for which the five
model types were compared were chosen on the basis of
BIC values from the BR models. Because of different model
fitting techniques, BIC values from all five model types are
not directly comparable. For example, the BIC values from
the BRdep models, fit with PROC GLIMMIX in SAS, are
based on the quasi-likelihood and therefore cannot be com-
pared with the BIC values from the BR and COP models
that are based on the maximum likelihood. The COP models
provided smaller BIC values than the BR models, indicating
a better model fit, apparently because the BR model ignores
spatial dependence, whereas the COP model accounts for it.
Likewise, the GLS models had smaller BIC values than the
OLS models, which ignore the spatial dependence present in
the case study data. According to Raftery (1995) and Kass
and Raftery (1995), a difference in BIC values (�BIC) of
�2 between models is “not worth more than a bare men-
tion” and a �BIC � 10 implies very strong evidence that the
models are different. Hence, based on �BIC, there is strong
evidence that the COP models are superior to the BR
models, followed by the GLS and OLS models. Within each
model type, �BIC indicates that model 2 is not significantly
different from model 3. However, for OLS, GLS, and COP
models, model 1 is significantly different from model 2.

Based on the case study results, the OLS and GLS
models were inferior to the BR, BRdep, and COP models,
because they resulted in the largest MSPE values and neg-
atively biased predictions. This finding suggests that BR,
BRdep, and COP models based on the beta distribution may
be more appropriate for modeling percent shrub cover than
OLS regression with a logit-transformed response, which
has already been argued for other responses that take on
values in the open interval (0, 1) (e.g., Kieschnick and
McCullough 2003, Smithson and Verkuilen 2006). Asym-
metry was low in the case study data, and it can be expected
that the difference in performance of the OLS and GLS
models compared with that of the BR, BRdep, and COP
models will be more pronounced if the assumption of nor-
mality of residuals was violated. The COP model provided
no improvement compared with the BR model in terms of
MSPE, because we simply inserted explanatory variables
and estimated betas into Equation 11, thus ignoring spatial
information from nearby points in the prediction. Prediction

Table 4. Bias of parameter estimates and % coverage of confidence intervals for simulated data with � � 0.31

Model

Bias
% Coverage of

confidence intervals

�0 �1 �2 �0 �1 �2

OLS �0.0449 (P � 0.089)* 0.0055 P � 0.001) �0.0257 (P � 0.001) 89 84 86
GLS �0.0351 (P � 0.1615) 0.0054 (P � 0.001) �0.0292 (P � 0.001) 97 93 94
BR �0.0098 (P � 0.543) 0.0002 (P � 0.508) 0.0008 (P � 0.807) 87 85 88
BRdep �0.0001 (P � 0.995) 0.0003 (P � 0.366) �0.0024 (P � 0.493) 95 96 94
COP �0.0065 (P � 0.668) 0.0004 (P � 0.252) �0.0007 (P � 0.819) 95 95 94

True regression parameters are �0 � �0.34, �1 � �0.037, and �2 � �0.24, for the BR, BRdep, and COP models and (�0, �1, �2) � �0.505, 0.056,
�0.369) for the OLS and GLS models
* P value for a t test testing whether the bias is significantly different from 0.
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at unobserved locations using the COP model is a topic of
current research that needs further investigation.

The focus of the statistical analysis was to estimate

regression parameters �0, �1, and �2, whereas the simula-
tion study demonstrated the effect of ignoring within-site
spatial dependence. Therefore, it is important to consider
the distinctions between the models with respect to the
interpretation of the regression parameters and with respect
to the way they model dependence.

BR, BRdep, and COP all model percent cover with a beta
distribution and allow a heteroscedastic response in accor-
dance with Equation 4. Each response yi has a mean given
by Equation 5 with a logit link function. With this choice of
link, the coefficient �k of one of the predictors, say DTS,
can be interpreted in terms of the odds ratio. In particular, if
yi and yj have identical predictor values except for DTSi �
DTSj � 1, then e�k is the ratio of �i/(1 � �i) to �j/(1 � �j).

BRdep models dependence as correlation between the yi.
Because correlation is specifically linear dependence, this
characterization can be problematic for non-normal distri-
butions because the maximum possible correlation may be
much smaller than 1, making it difficult to interpret the
strength of dependence (see, e.g., Madsen and Dalthorp
2007).

COP models monotone dependence rather than correla-
tion among the yi by means of the copula correlation matrix

. As an element of 
 ranges from �1 to 1, the dependence
between the corresponding pair of yi ranges from perfect
negative dependence to perfect positive dependence (Joe
2001). If 
 is the identity matrix, the COP model coincides
with BR.

OLS assumes independence and homoscedasticity,
whereas GLS models dependence as residual covariance
between logit-transformed percentages and can accommo-
date heteroscedasticity on the logit scale. Both OLS and
GLS assume normality of residuals, and if this assumption
is reasonable, then modeling dependence as residual cova-
riance is sensible. However, because covariance is correla-
tion scaled by the standard deviations, GLS may have the
same drawbacks as BRdep in terms of modeling depen-
dence when the normality assumption is not met.

In contrast to the marginal beta models, OLS and GLS
model the logit-transformed percentages as a linear function
of the regression parameters. The coefficient �k of DTS is
the change in mean logit-transformed percentages when
DTS is increased by 1 unit and all other predictor variables
are held constant. Alternatively, e�k is the ratio of the
median yi/(1 � yi) to the median yj/(1 � yj), where DTSi �
DTSj � 1 and all other predictors are held constant. The
awkwardness of this interpretation compared with the more
natural odds ratio makes the marginal beta models more
attractive.

GLS, BRdep, and COP models account for spatial de-
pendence, whereas the OLS and BR models ignore it. Ig-
noring spatial dependence in a model when it is present in
the data can affect the precision of the regression estimates
and result in invalid tests of significance. The simulation
study data were created to incorporate spatial dependence
with an exponential decay model within each site. When the
simulated data are dependent, the effective sample size is
smaller than n � 248. The GLS, BRdep, and COP models
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Figure 2. Percent confidence coverage of the parameter
estimates �0 (top), �1 (middle), and �2 (bottom) for OLS, GLS,
BR, BRdep, and COP models for the simulated data over all �
values. � � 0.01 � strong spatial dependence; � � infinity �
no spatial dependence.
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adjust the standard errors to account for the reduced effec-
tive sample size. The OLS and BR models ignore depen-
dence and thus their standard errors are too small, leading to
reduced confidence coverage. Accordingly, the confidence
coverage of the GLS, BRdep, and COP models exceeded
that of the OLS and BR models in the simulation study,
which demonstrated the superiority of the GLS, BRdep, and
COP models over the OLS and BR models when spatial
dependence is present. When the data are spatially indepen-
dent, the BR, BRdep, and COP models as well as the OLS
and GLS models, respectively, yield almost identical re-
sults, providing unbiased parameter estimates and approxi-
mately 95% confidence coverage for the parameters. The
simulation study showed that for the given data, 	 of ap-
proximately 
0.6 was equivalent to very weak spatial de-
pendence, making it unnecessary to include spatial depen-
dence structure in the model for 	 
 0.6. Because the scale
of 	 depends on the minimum distance between observa-
tions (3 m in the case study presented and simulation data),
the 	 value for which spatial dependence can be ignored will
differ for studies with a different sampling design.

The simulation study also showed that even the GLS,
BRdep, and COP models provide fairly low confidence
coverage when very strong spatial dependence exists. Of the
three model types, the GLS model resulted in the lowest
confidence coverage among the three model types, suggest-
ing that the use of BRdep and COP models should be
preferred over the GLS model in the presence of very strong
spatial dependence. A possible explanation for the reduced
coverage with BRdep and COP models under very strong
spatial dependence is that the standard errors assume a large
sample, and effective sample size decreases as dependence
increases.

The BR model accounts for the bounded nature of veg-
etation abundance data, and the BRdep as well as the COP
model, which was introduced in this study, also account for
spatial dependence in the data structure. Another common
problem faced by researchers who deal with vegetation
abundance data is the presence of excess zeros or a point
mass at zero. If the data are zero-inflated, it might be
necessary to fit zero-inflated BR and COP models. Cook et
al. (2008) presented zero-inflated beta regression in the
context of the analysis of corporate capital structure deci-
sions and found that the zero-inflated model outperformed
other standard methods that ignored the point mass at zero.
Adapting the COP model to accommodate a zero-inflated
response, while spatial dependence is modeled, is a topic for
future research.

Conclusions

BR and COP models based on the beta distribution can
be used to estimate percent shrub cover in forested land-
scapes. The amount of unexplained variation in the model is
generally large when percent shrub cover responds to pro-
cesses and conditions that occur at a finer scale than the
available explanatory variables. Future researchers should
focus on improving the model fit of understory vegetation
cover models by eliminating the scale issue between re-
sponse and explanatory variables.

OLS and GLS models with log-transformed response
provided biased model predictions and larger MSPE than
the BR, BRdep, and COP models, which are based on the
beta distribution. Hence, the use of OLS models for mod-
eling shrub cover data bounded between 0 and 1 is not
recommended. An additional drawback of the OLS and
GLS models with log-transformed response is the interpre-
tation of the parameter estimates that is not straightforward
on the original scale of the response.

The COP model introduced here, which accounts for
spatial dependence, resulted in 95% confidence coverage
and, hence, provided better confidence coverage than the
BR model when spatial dependence was present in the data.
The COP and BRdep models both account for spatial de-
pendence and result in the same confidence coverage when
spatial dependence is present. Because BRdep models de-
pendence as correlation, which is strictly linear dependence,
interpreting the strength of dependence can be difficult
using this model. The COP model does not have this prob-
lem because it models monotone dependence rather than
correlation.

When the spatial dependence is very strong, even the
GLS, BRdep, and COP models result in smaller confidence
coverage than 95%, with the GLS model providing the
worst confidence coverage among the three model types.

Although the motivation for this study was to model
percent shrub cover in riparian forests, the BR, BRdep, and
COP models are general and can be applied to other vege-
tation communities or other types of data that are bounded
to the open interval (0, 1). The BR, BRdep, and COP
models should be extended so that they allow accounting for
zero inflation, which is frequently observed in vegetation
studies.
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