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We examined the performance of several generalized linear fixed- and mixed-effects individual-tree
mortality models for Douglas-fir stands in the Pacific Northwest. The mixed-effects models accounted
for sampling and study design overdispersion. Inclusion of a random intercept term reduced model bias
by 88% relative to the fixed-effects model; however, model discrimination did not substantially differ. An

uninformed version of the mixed model that used only its fixed effects parameters produced predicted
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mortality values that exceeded the fixed-effects model bias by 31%. Overall, we did not find compelling
evidence to suggest that the mixed models fit our data better than the fixed-effects model. In particular,
the mixed models produced fixed-effects parameter estimates that predicted unreasonably high mortal-
ity rates for trees approaching 1 m in diameter at breast height.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Tree mortality is a critical component of stand growth and yield
models. It is also highly variable and difficult to predict (Lee, 1971;
Dobbertin and Biging, 1998). The nature of data collected to model
and quantify mortality, however, may challenge the assumptions
inherent in statistical tools used to estimate mortality. In this study
we examine a generalized linear mixed-effects method to account
for data structure and lack of independence.

Lee (1971) and Staebler (1953) described tree mortality as
either regular or irregular. Irregular mortality includes death
occurring from insects, disease, fire, snow damage, and wind. This
type of mortality typically is episodic, brief, and difficult to predict.
Regular mortality is more predictable, and includes influences such
as competition for light, moisture, and nutrients. As stands become
more crowded, a degree of mortality usually occurs. Trees may die
for several possibly co-occurring reasons: suppression where
stands are differentiating, weakening due to insects and disease,
and buckling where stems become tall and thin (Oliver and Larson,
1996). Trees in stands characterized by regular mortality exhibit a
preponderance of mortality amongst smaller-diameter individuals
that are over-topped by neighbors (Peet and Christensen, 1987).
Mortality rates become low for established trees until larger diam-
eters are reached and the mortality rate increases again (Buchman
et al., 1983; Harcombe, 1987; Monserud and Sterba, 1999).
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Although both classes of mortality may affect stands, only single-
tree regular mortality models are routinely incorporated in most
growth and yield simulators such as FVS (Dixon, 2011) and ORGA-
NON (Hann, 2011).

Single-tree mortality models have been developed using a vari-
ety of data and approaches. Logistic models are common for data
sets where revisit frequency consists of equal-length time periods
(Hamilton, 1986; Bigler and Bugmann, 2003; Jutras et al., 2003;
Moore et al., 2004; Adame et al., 2010). However, if the time peri-
ods differ, a common solution is to use the logistic model but insert
time as a power upon survival probabilities or use a complimen-
tary log-log link function (e.g., Monserud, 1976; Eid and Tuhus,
2001; Moore et al.,, 2004; Temesgen and Mitchell, 2005; Fortin
et al., 2008). For stands where remeasurement occurred multiple
times, researchers either avoid pseudoreplication at the level of
the tree by omitting all but the last remeasurement for each tree
(Hamilton, 1986) or include the remeasurement information
(Temesgen and Mitchell, 2005; Fortin et al., 2008).

Data used in these analyses are from nested samples, with the
highest level referred to as installations. Each installation contains
one or more plots; each plot contains many trees with repeated
measurements. Analyses performed on individual tree mortality
data has recently begun to account for the structured nature and
non-independence by using generalized linear mixed-effects mod-
els. Logistic models by Adame et al. (2010) and Jutras et al. (2003)
include random intercepts for study plots or stands. A complimen-
tary log-log model by Fortin et al. (2008) included an adjusted
intercept with random effects for study plot and specific time
interval nested within plot.

Prediction performance for nonlinear mixed-effects models may
be improved (less bias and greater precision) when compared to
corresponding fixed-effects models conditional on the availability
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of previous information on the subject; however, in absence of ran-
dom-effects information, predictions using just the fixed portions of
the parameterization from the nonlinear mixed-effects model exhi-
bit greater bias and less precision than even the original fixed-ef-
fects model (Monleon, 2003; Temesgen et al., 2008; Garber et al.,
2009). Setting the random effect to zero follows from prediction
theory only for linear mixed models, but it has a different meaning
for nonlinear models. Consider a linear mixed model where X is a
(n x p) design matrix where n is the number of observations and p
is the number of fixed-effects parameters, [ is a vector of linear
slope values, Z is a (n x r) design matrix where r is the number of
random effects parameters, y represents G-sided random effects
parameterization, and ¢ is the random error:

y=Xp+Zy+e, where E(y) =E(e) =0

Then, conditional on the random effect, and because the expec-
tation is a linear operator,

E(yly)=Xp+Zy
Unconditionally,
Ey)=EXp+Zy+¢e)=Xp+ZE(y) =Xp

Thus, in a linear model, the unconditional expectation can be
calculated from the conditional expectation by setting the random
effect to zero:

E(y) =E(yly =0)

For a nonlinear model, this is not the case. The nonlinear mixed
model can be written as:

Y=f(X, B, Z, y) +& where E(y) =E(¢) =0
Conditional on installation:
Eyly) =fX, B, Z, y)

Unconditionally:
E(y) = E[E(y|)] = EIf (X, B, Z, V]

Unlike linear models, for nonlinear models, the unconditional
model is not the same as the conditional model with the random
effects set to zero:

E(y) # E(yly = 0) because E[f(X, §, Z, )] = [ fiX, B, Z, y)du(y) # f(X,
B, Z, v=0), where u(7) is the distribution function of 7.

The model for E(y) is known as the population-average model
and the model for E(y|y) is known as the subject-specific model.
For nonlinear mixed models, those versions are different. Choosing
which type of model and inference is appropriate for each objective
is fundamental when dealing with nonlinear mixed models. For a
tree from a completely new stand that does not have information
to estimate the random effects and, therefore, condition on the
stand effect, the proper model is a population average model.
When using the subject-specific model with y=0 (i.e.,, the sub-
ject-specific model for the average stand), prediction performance
is expected to decline. Again, in linear mixed models this is not an
issue, because setting y = 0 yields the population-average model.

Forest management requires models that are useful beyond their
study areas. Generalized or nonlinear mixed-effects models can in-
crease bias when applied to novel data (e.g., Robinson and WyKkoff,
2004). Mixed models require estimated information about a hierar-
chical level that may be unknown for novel data sets. One technique
to extend generalized linear or nonlinear mixed-effect model appli-
cability is to utilize minimal data from new stands for estimating
the random effects parameters. This allows the application of non-
linear mixed effects models beyond their original data frames (Mon-
leon, 2003; Temesgen et al., 2008; Garber et al., 2009). However, this
technique may be limited by the response variable type. In those
studies it worked for tree height, a continuous static variable. Our

study’s response variable, individual tree mortality, is rare, bino-
mial, dynamic, and requires several years of data collection to ob-
serve. Thus, incorporating subsample information from new plots
to inform mixed-effects model predictions is generally unfeasible.

The objectives of this study are to (1) determine whether a gen-
eralized linear mixed model fit to repeatedly remeasured Douglas-
fir (Pseudotsuga menziesii [Mirb.]) trees can improve mortality esti-
mation over a previous nonlinear estimation approach (Hann et al.,
2003, 2006), and (2) compare the predictive abilities of mixed-ef-
fects models to nonlinear least squares estimation in the presence
and absence of random effects information. We expect biased pre-
dictions from the mixed model that lacks random effects informa-
tion, but examine the degree by which those results are useful
relative to the nonlinear least squares predictions. Taken together,
our goal is to examine how well models met our objectives and
whether we produce a model that is useful for current Douglas-
fir growth and yield simulators.

2. Methods
2.1. Study area and data acquisition

Data used in this analysis were obtained from randomly located
installations on nine land ownerships and represent a subset of
data described in Hann et al. (2003, 2006). One of the uses of the
overall data collection effort was to calibrate the ORGANON stand
development model (Hann, 2011) for intensively managed Doug-
las-fir in the Pacific Northwest region of the USA and Canada. What
follows is a description of the subsetted data. The data were from
304 permanent sample installations from Southwest British
Columbia, Western Washington, and Northwestern Oregon. The
820 plots within those installations contained 195,795 revisit data
collected from 70,720 Douglas-fir trees. Trees were revisited one to
18 times over the course of data collection. Time between revisits
was not equal among trees or plots, and varied from 3 to 7 years
(median = 5 years). The fixed-area plots varied in size from 0.041
to 0.486 ha (mean = 0.069). The average breast height age was
27.8 years and ranged from 3 to 108 years. Plots included in this
study were not subject to thinning or fertilization experimental
treatments.

We further reduced the data set according to two criteria. The
first criterion only permitted data from installations that had two
or more plots. This criterion was necessary for creating mixed-ef-
fects mortality predictions (described below), and it removed
12,616 trees, 38,314 observations, and 67 single-plot installations
from the data set. The second criterion was that we retained only
trees with DBH <101.6 cm. We removed larger-DBH trees to allay
model convergence issues likely arising from a paucity of mortality
information leading to a lack of fit at that extreme. This removed
eight observations and five trees (<0.01% of data) and permitted
model convergence. The resulting data set included 157,473 revis-
its of 58,099 trees in 753 plots located within 201 installations.

2.2. Mortality estimation

We based this analysis on a general equation of mortality given
differing plot revisit schedules as described by Hann et al. (2006):

PM=1.0-[1.0+e ®] "N gy (1)

where PLEN is the length of the growth period in 5-year increments
(i.e., length of a growth period in years divided by 5), PM is the 5-
year mortality rate, and éepy is the random error on PM. The re-
sponse variable distribution is y — Bernoulli (7) where the observed
response was y and 7 is the corresponding response probability.
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Several different parameterizations have been examined for Xg.
Hann et al. (2006) modeled XB as:

X = fo + pDBH + f,CR + p;BAL + f,DFSI 2)

The variable DBH is diameter at breast height (cm) at 1.3 m, CR
is tree crown ratio, BAL (m?/ha) is basal area per ha in trees with
diameters larger than that of the subject tree on the plot, and DFSI
is the Douglas-fir site index (Hann and Scrivani, 1987) in meters.
We examined the predictive ability of this model in three ways.
We wished to investigate whether the mixed-effects approach
would provide a reasonable mortality prediction for older trees,
so we included the square of DBH (DBH?) as a predictor variable
(e.g., Monserud and Sterba, 1999; Hann and Hanus, 2001). CR
was subsampled on many of the plots in the modeling data set
and would require the imputation of the missing values if used
in a mortality equation. This would introduce prediction error
issues which we decided to avoid by removing CR from the
analysis. We retained BAL to represent competition experienced
by an individual tree (Wykoff et al., 1982; Wykoff, 1986; Temesgen
and Mitchell, 2005). The parameterization we used in this analysis
was:

XB = By + B DBH + §,DBH? + B, BAL + f,DFSI (3)

We present a generalized linear fit of this model, fit via a max-
imum likelihood estimator (PROC GLIMMIX, SAS Inc. 2008). This
model produced results identical to those from the nonlinear ap-
proach employed by Hann et al. (2006) to estimate tree mortality.
We refer to this model as NLS given its equality to the original pro-
cedure. We also examined two generalized linear models with the
same parameterization as (3). One corrected for model overdisper-
sion by altering the model variance. The other corrected for over-
dispersion and included a random effect term for the model
intercept grouped by installation. We selected installation as a
grouping level instead of plot due to our desire to validate models
using a leave-one-out approach (described below). We refer to
these models as GXR and GXME, respectively.

We constructed GXR and GXME using the generalized linear
mixed-model procedure Proc GLIMMIX (SAS Institute Inc., 2008).
The procedure made use of a pseudo-likelihood estimator instead
of a maximum likelihood estimator due to the presence of R-sided
mixed effects (Schabenberger, 2007). The advantages of GLIMMIX
over other SAS procedures (e.g., Proc NLMIXED) included the ability
to incorporate more than one random effect into the model (G-sided
random effect) and to include a multiplicative overdispersion
parameter (R-sided random effects). A disadvantage of GLIMMIX is
that its pseudo-likelihood estimator may produce biased estimates
in certain contexts (Breslow and Lin, 1995). The main structural dif-
ference between the marginal (fixed-effects or population-aver-
aged; i.e.,, NLS, GXR) and the mixed-effects model GXME is the
incorporation of the G-sided random effects terms Zy into the
mixed-effects model structure:

PM = 1.0 — [1.0 + e XB+20] PN g (4)

The Zy term alters the model linear predictors. We created a
model with an installation grouped random intercept by structur-
ing the linear predictors of our model as:

n=Xp+2y
= Bo + bi + p,DBH;; + B,DBH; + B;BAL; + f,DFSI; (5)
The linear predictors included a population-level intercept By, a
deviation from that intercept of amount b for installation i, and the

remaining parameter estimates for observations j in installations i.
The modified logit function is:

i =f() = 1= {1 +exp(-[n))} "™

b; ~ N(0, 62)

Var(yy|my = m5(1 — 10y) (6)

In GLIMMIX, the variance of observations, conditional on the
random effects, is:

Var[Y|y] = AV*RA'?

The diagonal matrix A contains the variance functions of the
model (i.e., Eq. (6)) and expresses the variance function for the
ith observation (Littell et al., 2006, p. 535). G-sided random effects
will therefore affect the values for A. The random effects matrix
R = ¢I where I is an identity matrix and ¢ is a dispersion scale
parameter. In binomial models where there is no overdispersion,
¢ = 1. However, if data are overdispersed, the variances can be
accordingly increased by changing this parameter. We tested for
model overdispersion using the Pearson’s statistic (Littell et al.,
2006). We additionally weighted our tree remeasurement data
by their respective plot sizes (Flewelling and Monserud, 2002).
Model weighting is accomplished by calculating ¢/w;, where w is
the weight associated with observation i. To summarize, GXME
was constructed in PROC GLIMMIX with linear mixed- and fixed-
effects predictors from (5) used in the nonlinear Eq. (4). A random
intercept was estimated by installation and we included an R-sided
random effect to account for overdispersion. Observations for the
model were weighted by plot size.

A difficulty with using the estimates for GXME to predict mor-
tality for trees that are not part of a current installation is that no
hierarchical parameter values for that installation would be avail-
able. The random effects parameters remain uninformed. We ex-
plored the utility of applying the uninformed mixed model by
examining the predictive ability of an additional model, GXFE. This
model incorporates the fixed-effects parameter estimates from
GXME but discards its random effects parameterization.

We validated models NLS, GXME, and GXFE using a leave-one-
out approach. GXR was excluded as model validation relies on
parameter point estimates and its parameter point estimates (not
error) should be identical to those for NLS. In this instance we
repeatedly fit models to subsets of the data. Each subset included
all but one of the plots (model set). The resulting model was used
to predict the response of each of the excluded sites’ observations
(prediction set). In order to facilitate inclusion of models that relied
on random effects at the level of installations, we reduced the data
set to include only installations with two or more plots. With one
plot excluded, the model was still able to estimate a random effect
for that installation.

We used model estimates from the model data set to produce
residual values for the validation set. We used the Hosmer-Leme-
show test to determine model goodness-of-fit (Hosmer and Leme-
show, 2000) and compared model discrimination by using receiver
operating characteristic (ROC) curve analysis and examining the
area under the ROC curves. We examined model and bias for the
overall validation data set and for different values of BAL, DFSI,
and DBH. We calculated mean bias using the following equation:
Bias — E(J’j - Ty) @)

n

The symbol y; is a single mortality observation (1 or 0), 7t;; is the

fitted value, and n is the number of observations.

3. Results

The data set included the mortality of 9982 trees (6.3% of total).
Deaths appeared to be skewed towards smaller DBH categories
while mortality appeared to increase at higher BAL volumes,
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Fig. 1. Histograms of observations (live + dead) by variable name. The clear bars represent all data of a particular category; black bars represent the number of dead

observations.

indicating that trees may have been more likely to perish if the
stand typically had more trees with basal area greater than the tree
in question (Fig. 1).

Model coefficients for the three models were estimated from
the full sample data set (Table 1). The inclusion of R-sided random
effects variables reduced overdispersion. The Pearson’s statistic for
the condition distribution for the NLS model was 10.88, substan-
tially different from a value of 1. The Pearson’s statistics for GXR
and GXME were 1.00 indicating that the inclusion of the R-sided
or R- and G-sided random effects corrected for the overdispersion.
As a consequence, GXR fixed-effects parameter standard errors
were greater than NLS standard errors. A difference among models
was the parameter values for DBH?, which increased by 60% when
comparing NLS to GXME.

Predicted values generated from the mixed-effects model with
random variables improved bias compared to the nonlinear model.
However, the mixed model’s bias suffered when only its fixed ef-
fects were considered (Table 2). On average, GXME, with random
effects and overdispersion terms, exhibited a bias that was 22%
the values of model NLS. Model GXFE'’s bias was four times greater
than the value of NLS.

The area under the ROC curve was 2.3% higher for GXME than
for NLS or GXFE, indicating that the mixed model exhibited a
slightly greater degree of model discrimination. The values for
NLS and GXFE were nearly identical. The Hosmer-Lemeshow good-
ness-of-fit test statistics were significant (df =8, p <0.001) for all
models considered, indicating that no models fit data at an accept-
able level (e.g., x?<15.5). Pearson’s residuals increased with
DBH > 20 cm and BAL < 40 m?/ha; a pattern did not appear evident
between residuals and DFSI. Among the models, GXFE’s score was
substantially higher than either NLS or GXME, and NLS had the
lowest score of the three. Pearson’s correlations among variables
was highest between DBH and DBH? (0.935), the next highest
was between DBH? and DFSI (0.191).

Table 1

Table 2

Comparisons of model performance at predicting the probability of tree mortality
over a five-year period (PMs). Comparisons include model bias, area under the ROC
curve (AUC), a and the Hosmer-Lemeshow goodness-of-fit test statistic (H-L Test).
Number of observations = 157,473.

Models Bias (Ps.year mort) AUC H-L test
NLS 0.002643908 0.845 366.8
GXME —0.000604775 0.864 388.8
GXFE 0.0110345 0.844 1505.6

Bias was generally lowest for model GXME across all values of
all predictor variables with a few close exceptions (Fig. 2). Values
and patterns of bias were similar for NLS and GXFE across
variables, although the bias values for GXFE were generally but
not always more extreme. In particular, bias for GXFE was more
than twice as great as other models at DBH < 20 cm. Comparisons
of observed and predicted values of mortality (Fig. 3) demonstrate
the generally closer fit of the mixed model predicted values to ob-
served mortality. Relative to GXFE, NLS better predicts tree mortal-
ity at DBH values <20 cm and is fairly equivalent at other DBH
values. NLS mortality predictions were closer to observed values
at all BAL categories except 50-59 m. NLS also outperformed GXFE
at four of the six DFSI categories (not including 30-34 and >45 m).

We compared predicted model performance to observed values
to determine where model shortcomings were (Fig. 4). Of note,
GXME appeared to best match observed mortality at DBH values
<20 cm while the other models generally underpredicted tree
mortality. However, all models except for NLS predicted a dramatic
increase in mortality beyond 90 cm DBH. The 20% observed
mortality at 97 cm DBH represented one of five trees of that size
class perishing. We examined fixed-effects parameter values for
GXME for trees with DBH <90 cm to determine if this mortality

Fixed and random effects estimates and standard errors (SE) for the generalized linear least squares models NLS, GXR, and GXME. The overdispersion parameter (residual)
indicates the size of the underlying residual effect’s variance and the standard error of that effect.

NLS GXR GXME

Estimate StdError Estimate StdError Estimate StdError
Fixed effects
Intercept -4.5118 0.02807 -4.5118 0.09267 —5.0958 0.2891
DBH —-0.2105 0.00251 —-0.2105 0.00829 -0.2719 0.00677
DBHSQ 0.00168 7.8E-05 0.00168 0.00026 0.00279 0.00017
BAL 0.00421 1.8E-05 0.00421 6.1E-05 0.00495 8.3E-05
DFSI 0.04897 0.00068 0.04897 0.00224 0.05996 0.00804
Random effects
Residual (Subject = tree) 10.884 0.03879 10.275 0.03665
Intercept (Subject = installation) 0.6353 0.07953
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& d — s 4. Discussion
° GXME
- SZ;ENed We report partial success at meeting our study objectives. The
mixed-effect models accounted for overdispersion in the data
£ o | and accordingly increased parameter standard errors. The mixed-
5 ° effects model GXME additionally reduced prediction bias relative
é to NLS. However, the predicted fits at observed parameter values
> were of concern; the DBH? parameter of the mixed-effects model
?U o GXME and its related models predicted an unreasonably high
g © mortality rate for trees with DBH > 90 cm. The larger-DBH predic-
o tions for NLS were more reasonable. The GXME model appeared to
;"} best fit the data at DBH < 40 cm, a range that included the bulk of
b . our data.

S The inclusion of R-sided random effects assisted in reducing
model overdispersion. Although unreported, the estimated stan-
dard errors of parameter estimates resulting from earlier analyses

° ~ such as Temesgen and Mitchell (2005) and Hann et al. (2003, 2006)

S 7 would have been too small. For those authors the models were

[ ‘ ‘ ‘ ‘ ‘ used in validation trials so the means, not standard errors, affected
0 20 40 60 80 100

DBH (cm)
Fig. 4. Predicted mortality rates by DBH and average parameter values at specific

DBH values.

was exhibiting a strong influence on DBH? and found that results
were virtually unchanged.

validation outcomes. The increase in error terms could indicate
that previously-supported parameters were not contributing to
the model, although all of our parameters remained supported in
all models.

Once we included a random intercept in the model along with
an R-sided random effect, the term for DBH? increased markedly.
Bias for the mixed-effects model was improved relative to the mar-
ginal model. However, when we examined predicted fits for the
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mixed model’s fixed-effects parameters without taking into ac-
count the individual installation information (random intercept)
the bias increased to an amount four times greater than the mar-
ginal model. Clearly, it would be difficult to justify this model’s
use. This finding is similar to results reported by several other
authors (Monleon, 2003; Temesgen et al.,, 2008; Garber et al.,
2009), and confirms our expectation that this would be the case.

Other authors provide examples of studies in which mixed
models produce an improvement in predictive ability, and minimal
data collection allowed for an application of the mixed models to
novel stands (Monleon, 2003; Temesgen et al., 2008; Garber
et al., 2009). Obtaining ancillary mortality data to estimate random
effects is prohibitively difficult. Given the modest improvements in
prediction from the G-sided mixed model, the anticipated poor
performance of the uninformed mixed model, and our lack of abil-
ity to apply the mixed model to novel stands, we find no advantage
here with utilizing the generalized linear mixed-effects models for
predicting Douglas-fir mortality.

Our issues with model bias when fixed-effects parameter esti-
mates were extracted from the generalized mixed model indicate
a problem with our application, not a problem with the model.
We wished to obtain a finding we could generalize between sub-
jects when the mixed models were best able to generalize results
within subjects. We imagine that if we desired inference to addi-
tional plots within installations, our mixed model would have pro-
ven more useful than the marginal model.

All of our models examined failed the goodness-of-fit test; it ap-
pears this may be in part due to results for larger-diameter trees
that were among the largest trees in a stand. We interpret this to
indicate that our model did not fit mortality data well at these lar-
ger ranges where we had a relative paucity of data. Other possible
contributing issues include overfitting the model or providing
insufficient fixed-effects parameters. Among models, the good-
ness-of-fit scores were lowest for GXME with GXFE a distant third.

Across models, bias was highest at low DBH and high BAL val-
ues (both well-represented in the data set). With DFSI, bias was
high for the smallest category which corresponded with few data
relative to other categories. Bias patterns differed across models
as well. GXME tended to exhibit a different and reduced pattern
of bias across all three predictor variable categories. The models
that were not incorporating installation-specific effects into their
estimates tended to behave similarly with model GXFE frequently
providing the most extreme bias per variable category.

The intensity of the effect DBH? had on mortality prediction at
greater DBH values surprised us. Although our predicted U-shaped
mortality curve is in spirit similar to that discussed by Harcombe
(1987) and found by Monserud and Sterba (1999) for Norway
Spruce and Hann and Hanus (2001) for Douglas-fir, grand fir, white
fir, incense-cedar, ponderosa pine, and California black oak, only
the predicted mortality for large DBH values from the model NLS
appeared reasonable. The mixed-effects based models predicted
mortality rates at 95 cm DBH that are simply too extreme; if those
estimates were real, old-growth (>180 year) Douglas fir stands
would not exist. However, the models, particularly GXME, did ap-
pear to predict observed mortality for trees <80 cm DBH. GXFE ap-
peared to most severely underpredict the 5-year mortality rate.

5. Conclusion

Our generalized linear mixed model of Douglas-fir mortality did
not outperform a similar model lacking mixed effects. In particular,
the incorporation of mixed effects resulted in alterations to fixed
effects that produced unreasonably high mortality rates for trees
approaching 1 m in diameter. The practical application of predict-
ing mortality rates for novel stands did not improve with the

utilization of a mixed model. We believe this will generally be
the case for tree mortality estimation when random effects infor-
mation is unavailable, a condition that should be common. The cor-
rection for model overdispersion was appropriate and represented
an improvement in parameter variance estimation, but overall we
cannot recommend the mixed model as a suitable replacement for
the original model form.
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