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ffects of lidar pulse density and sa

roach to esti
variables

Jacob Strunk, Hailemariam Temesgen, Hans-Erik Andersen, James P. Flewelling,
and Lisa Madsen

Abstract. Using lidar in an area-based model-assisted approach to forest inventory has the potential to increase estimation
precision for some forest inventory variables. This study documents the bias and precision of a model-assisted {(regression
estimation) approach to forest inventory with hdar-derived auxiliary variables relative to lidar pulse density and the number of
sampile plots. For managed forests on the Lewis portion of the Lems-McChord Joint Base (35025 ha, 23290 forested) in
western Washington state, we evaluated a regression estimator for combinations of pulse density (05-3 pulses/m?) and sample
size (15103 plots) to estimate five forest yield variables: basal area, volume, biomass, number of stems, and Lorey’s height. The
results indicate that there is almost no foss in precision in using as fow as .05 pulses/in® relative to 3 pulses/m”. We demonsirate
that estimation prm'ision dec} ed quickly for reduced sarple sizes {as expected from sampling theory); but of more importance
we demonstrate that sample size has a dramatic effect on the validity of inferences. Our investigations indicate that for our test
dataset that central limit theorem based confidence mtervals were too small on average for sample sizes smaller than 55. The
results from this study can aid in identifying design components for forest inventory with lidar which satisfy users’ objectives.

Résumé. L'utilisation du lidar pour la réalisation des inventaires forestiers en utilisant une approche basée sur la
modéhsation de la surface permet d’améhorer la précision des estimations pour certaines variables des inventaires

le size on
ate forest

forestiers. Dans cette &

territoire de la Lewis-McChord

tude, on documente le blalS ¢t la précision d’une approche basée sur la modélisation {estimation par
régression) pour les inventaires forestiers utilisant des variables auxiliaires dérivées
Iimpulsion lidar et au nombre de placettes-échantillons. Dans le cas des forét

par lidar relativermnent a la deusité de
aménagées situées dans la portion Lewis du

Joint Base (35025 ha, 23250 en forét), dans Pouest de 'état de Washington, on a évalué
un estimateur par régression pour des combinaisons de densités d’impulsions {,05-3 impulsions/m*)
d’échantillons de (15-105 parcelles) pour estimer cing variables du rendement fOl‘CStiCl, ie

¢t de tailles
¢. 1a surface terriére, le volume, la

biomasse, le nombre de tiges et la hauteur de Lorey. Les résultats montrent qu’il y a trés peu de perte de précision en

eae . — . ;2 "
utilisant aussi peu que ,05 impulsion/m” par rapport a

e 3 5 1n2
3 impulsions/m~.
diminue rapidement dans le cas des échantillons a dimension réduite (commme on peut sy at

On démontre que la précision de estimation

tendre en fonction de Ja théorie

d’¢chantillonnage} — mais plus important encore, on démontre que la taille de ’échantillon a un effet dramaﬁque sur la

validité des inférences. Nos recherches indiquent que, pour notre ensemble de données de référence,

ies niveaux de

confiance basés sur le théoréme cet,‘{ra. limite étatent trop faibles en moyenne pour les échantillons de Lnilc mférieure 3 55,

Les résultats de cette étude peuvent
basés sur le lidar permettent ainsi de rencontre
Traduit par Ia Rédaction]

Introduction

Over the last several decades many studies have used
models to relate area-based measurements of forest attri-
butes to summary statistics calculated from airborne scan-
ning lidar for the same arcas (lidar metrics) including basal
area (Lefsky et al, 1999), stem volume (Nzsset, 1997b),

aider a Videntification des composantes dans la conception d
les ohjectifs des utilisateurs,

eg inventaires forestiers

stand height (Nasset, 1997a), biomass (Lefsky et al., 1999;
Means et al., 1999), and others. The many studies doc-
umenting the area-based relationship between hdar and
forest variables are important because they indicate that
there is a strong association between the two types of
variables, although the studies may provide limited descrip-
tions of how the models shouid be used for practical
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ference. The most common approach to inference in forest
ventory and survey sampling in general is design-based
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inference. In the design-based conlext a probability sample
is used to make inference about parameters of a finite
population {e.g., the population mean or total). Lidar
metrics and a model can be leveraged 1n a design approach
by using a model-assisted approach (Parker and Evans
20607; Corona and Fattorini, 2008).

Aswith planning a traditional design-based inventory, it is
desirable to guantify the effect that inventory design para-
meters have on estimation precision. Increasing the number
of ground plots, for example, 1s one possible way to modify a
design to increase estimation precision. In the case of model-
assisted forest inventory with lidar, lidar pulse density 1s an
important consideration in addition to the number of ground
plots. Lidar pulse density has been examined in a forestry
setting using at Jeast three approaches, including thinning the
data (Holmgren, 2004; Gobakken and Nasset, 2008; Mal-
tamo et al, 2006; Magnussen et al., 2010), performing
multiple lidar acquisitions for the same area {(Parker and
Glass, 2004; Neasset, 2004), and generating synthetic lidar
data {Lovell et al,, 26085}, There appears to be a consensus
among findings that reduction in pulse density increases the
variability in lidar metrics (sometimes this 1s expressed
implicitly in studies, such as in increased standard error
(SE) estimates for model coefficients for reduced pulse
density). This is reasonable given that most of the hdar-
derived predictors are consistent statistics, thus we would
expect their sarapling variation 1o decline as the number of
fidar points increases. However, in part due to methodolo-
gical differences, stodies differ in the rate at which reduoced
pulse density affects the residual variability of a fitted model.
The study by Gobakken and Nasset (2008) additionally
details the effects of number of ground plots and the size of
ground plots; both of these had an effect on residual bias and
root mean square error (RMSE).

The study by Magmussen et al. (2010) on the outset
appears simifar to our study, but their objectives, methods,
inferences, and the theoretical basis for their inferences
(model-based) are all different from our own. Because they
used a model-based perspective to explore replication effects
and made inferences to repeated measurements in time, we
have chosen not o delve into any comparisons with their
inferences here. Also, as all of their results concern a
nonlinear combination of predictors we cannot easily
discuss their results concerning the sampling distributions
of lidar metrics or estimators to other studies.

A limitation in attempting to use the results from previous
studies to guide practical applications is that they focus on the
effects of pulse density and sample size on the behavior of lidar
metrics, on the behavior of {itted model coefficients, and on the
variability of residuals. They do not generally directly assess
the practical implications of sample size and pulse density on
inference regarding forest inventory applications when lidar-
based models are used to assist in estimation. Some of the
mnplications are fairly obvions with respect to estimation given

© 2012 CAS

of Remote Sensing / Journal canadien de télédétection
the theoretical properties of the estimators. This is especially
the case for pulse density, given that most studies agree that
using even very low pulse densities has little effect on
modeling. However, we assert that it is crucial in the fiterature
to directly link implications about estimation to pulse density
and sample size to facilitate understanding and adoption. It is
also important to consider the viability of estimation strategies
for different pulse densities and sample sizes given that the
estimators used for estimation with lidar are only asymptoti-
cally valid. For example, an imaportant consideration that will
not be obvious from previous studies is that the ability to
develop valid confidence intervais is highly dependent upon
sample size. In this case the guideline of having at least 30
observations is msufficient to obtain reasonably valid con-
fidence intervals. Investigations of viability are clearly impor-
tant, because a number of previous hdar studies used nombers
of observations below the threshold for which we found viable
design-based inference to be feasible.

The first objective of this study was to quantify the effects of
hidar pulse density and sample size on design-based estimation
precision with auxifiary lidar. We then evaluated the influence
of pulse density and sample size on our ability to make valid
mferences from our estimates. Specifically, did our mean
estimator unbiasedly estimate the population mean, and did
confidence bounds cover the true mean with the specified
leve] of confidence. These aspects of inference were addressed
through the use of resamphng methods. We simuldated
sampling distributions of model-assisted mean and mean
variance estimators for different combinations of pulse density
and sample size and compared the sampling distributions with
the corresponding estimators. The simulations were per-
formed treating our sample as the population which prevents
us from making inference about the entire forest. However,
this did not affect our ability to make inference about the
sampling properties of the estimators. By treating our sample
as the population we could still make the same inferences
about the estimation strategy that could be made if we were
estimating the mean of the entire original population, but by
treating our sample as the population we could simplify our
presentation. We describe how our estimator behaves for
forest atiributes such as volume including whether the
estimator is unbiased and whether 95% confidence intervals
cover the true mean 95% of the time as they should. This will
guide us in developing forest inventories with lidar that can
support correct management inferences. The related study by
Strunk et al. (2012) provides a practical demonstration in
which the sarge data were used to make inference about the
entire population using the same set of estimators.

Methods

Study site

This study was conducted on the forested areas of the Fort
Lewis military installation (47° 30" 58" N 122° 35" 11" W)

7]
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Figure 1. Location of the study area in central western Washington state.

in western Washington state, USA (Figure 1). Managed
forests are dominated by conifer trees, especially Douglas-fir
with interspersed western hewmlock (Tiuga lieterophyila
{Rafy Sarg)), western red cedar (Thuja plicata Donn ex
D. Don), and very himited amounts of Sitka spruce (Picea
sitchensis (Bong.) Carriér) and pacific vew {Taxus brevifolia
Nautt.). Hardwood trees are also present on managed sites,
mostly in the wet areas, including red alder {4lnus Rubra
Bong), big leal maple (Acer Macrophyllum Pursh), and
black cottonwood (Populus balsamifera ssp. Trichocarpa

Y

(Torr. & A. Gray ex Hook.) Braysh“‘rv;.

Data description

Forest inventory variables

Values of forest inventory variables were calculated for
120 circular 809 m? (0.2 acres) permanent (plot centers and
reference trees are clearly monumented and detailed naviga-
tion guides are available for each plot) {orest inventory plots
measured between May of 2004 and January of 2005. The
plots are distributed on a 1.28 x 1.28 km grid within
forested areas of the study site. Field measurements
recorded for each tree that we used included diameter at
breast height (dbh) and species. Because measorements were
not consistently taken on trees less than 20.32 cm in
diameier, trees with a dbh less than 20.32 cm were excluded
from plot tabulations. Tree heights were measured for a
subset of trees on plots, approximately 2.5 trees per plot.

Unmeasured Douglas-fir heights were estimated using a
nonlinear mixed-effects model (Temesgen et al, 2008)
developed specifically for this study wvsing Fort Lewis
inventory data. There were insufficient numbers of trees
from other species to model heights m this way. Heights for
other species were estimated using the Wykof et al. (1982)
model form with Bugene area (Oregon state, USA) para-
meter estimates from the Pacific Northwest Coast Vanant

646

Overview for the Forest Vegetation Simulator (Keyser,
2010). The values for {ive variables including basal area
{(ba), total stem volume including top and stump (vol},
Lorey’s height (lor, mean height weighted proportional to
ba}, total aboveground biomass {bm), and number of trecs
(stems) were calculated for each plot (Table ). Vol was
estimated using the allometric models included with the
National VYolume Estimator Library plugin for Exeel
(USES, 2008) and bm was estimated using the models
provided by Jenkins et al. (2004

Precision plot positioning

Coordinates for plot centers were collected between
September 2007 and May 2008. Survey-grade differential
global navigation satellite system (GNSS) receivers were
used to survey plot centers marked with stakes. GNSS data
were post-processed and differentially corrected using the
Ensemble processing suite from Javad Navigation Systems
(now Javad GNSS) to achieve the desired level of accuracy,
approximately 1 m horizontal RMSE, under dense north-
west United States forest canopy (Andersen et al., 2009;
Clarkin, 2007).

Lidar data and variables
The hdar data used for this study were acquired in
September 2005 (leaf on} within one growing season from

Table 1. Sumumary of plot level variables.

Variable Mean Mininum Maximum  Standard deviation
ba (m*/ha) 342 0.0 84.3 19.3
vol {m*/ha} 437.0 0.0 1462.0 267.9
stems (ha) 220.5 0.0 864.9 156.9
bm (kg/hay 281214.3 0.0 914784.5 172487.1
lor (m) 345 0.0 56.7 5.2
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the time of measurersents. Lidar data were collected from a
fixed wing aircraft. The airplane flying height was
approx‘matﬂ]v 1660 m above ground, the scan angle was

+/— 14 degrees, and the laser beam divergence was 0.3 mrad.
Tne pulse repetition frequency (PRF) was approximately
71 kHz and the nominal pulse density was 4 pulses/m?.
The vendor collected the data with an Optech ALTM 3100,

The lidar metrics used in this study are a series of statistics
calculated on the lidar height data. The statistics were
computed on first return lidar heights above 1 m, inclading
thc mean, standard deviation, and percentiles {e.g., hts and
htgs represent Sth and 95th percentile heights, respectively).
We also computed the ratio of the number of first returns
above a given helght relative to the total number of first
returns for a plot {e.g., cover; and cover; are the proportions
of returns above 1 m ’md 2 m, respectively). Lidar heights
were estimated by subtracting ground elevations from lidar
elevations. Digital terrain modeling was performed using the
algonithm described by Kraus and Pleifer (1998) and
mmplemented in FUSION (McGaughey, 2012) which ap-
pears to be comparable with the more common Axelsson
(2000) approach in wooded areas (Sithole and Vosselman,
2004). Lidar metrics were also computed using FUSION
software.

Regression estimation

In this study we used a regression
et al., 1992} for the mean

estimator (Sdrndal

o= b (0
where [i, 1s the regression estimate of the response mean, ;’;’ i8
a vector of regression coeflicients fitted with ordinary least
squares (OLS) including the intercept, and i is the
transpose of a vector of means of auxiliary variables
incloding a 1.6 corresponding to the intercept.

This formulation of a regression estimator is appropriate
when the auxiliary variables are available for the entire finite
population of interest and when the sample was collected
using an SRS design (Lohr, 1999; Gregoire and Valentine,
2008; Sirndal et al, 1992} or another design where no
weights are necessary. Uther designs may require a shightly
different formmulation of BEquation (1), which includes a
correction term (an estimate of the bias) that is a function of
the sampling weights and regression residuals. In many
cases, as here, the estimate of bias is zero.

An accompanying standard error (SE) for Equation (1) 1s
(Sdrndal et al., 1992)

o
&

(52
Sbu e~ \’I i

/| 1
where SE; is the SE of the re rwqmn estimate of the mean,
n is the :nze of the sample, de w‘,g is the variance of the
regression residuals with the denominator corrected for the
mumber of parameters estimated in the model

© 2012 CAS
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We excluded the finite population correction term that is
present in the original because our simulation analysis was
performed with replacement. Egquation (2) is a simphifie
form of the estimator that does not account for variability in
the explanatory variables. However we found, as Sdrndal et
(1992) demonstrated, that there was no practical
difference in estimates when the simplified estimator is used.
Using estimators appropriate for a simple random sample
(SRS) for a systematic sample will yvield unbiased mean
estimates, but SEs under a systematic design will tend to be
conservative {too large) when using SRS estimators unless
periodicity of the attribute of interest matches the interval of
the systematic sample. This bias of the variance estimator is
typically ignored because there is not a design-unbiased
estimator for systematic designs.

Simulations

General description

In this study we used resamphing simolations to approx-
imate the sampling distributions of estimators for combina-
tions of pulse densities and sample sizes. The wuse of
simulations is well established in the statistical literature,
and theoretical bases for their use can be found in a variety
of textbooks (Efron and Tibshirani, 1993; Wolter, 2007).
Five thousand simulations were used to approx imate the
sampling distributions for each of the examined combina-
tions. For convenience we defined our population as our
complete sample, all 120 observations collected in the field.
This approach is similar to the approach used by Andersen
and Breidenbach (2007) to contrast several approaches to
estimation with hidar. We elected to treat our sample as the
population because we were not attempting to estimate
parameters of the original population; we were attempting
to describe general properties of an estimation strategy
relative to pulse density and sample size. Our results were not
the same as what would be obtained from another sample or
population, but they can serve to demonstrate general trends
and issues and can be indicative (rather than conclusive} of
behavior for similar areas and sampling designs

Lidar thinning

To assess the effect of pulse density on inference in model-
assisted estimation the original idar point cloud was thinned
repeatedly for reduced pulse densities. The pulse densities
examined were 05, 3, 45, 6, .85, 1, 2, and 3 puises/'m‘
Thinning, along with other lidar processing, was performed
using FUSION, The thinning algorithm is a Bemouili
sampling algorithm, where the probability of including
particalar point is determined by the desired point dm.%lt‘/
on a plot relative to the observed point density. The first step
in the thinning procedure was to thin the original hdar
dataset for large (relative to the plots) 314 m wide squares
centered on the ground plots. The large squares contain both
the plots and buffer regions around the plots to eliminate

7]
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edge effects within field plots when creating digital elevation
models (DEMs) and thinning the hidar. Reduced pulse
density data on the 314 x 314 m squares were then used
to select ground returns and create bare-earth digital
elevation models. A 3 m median smoother was applied 1o
each ground DEM. DEM elevations were then subtracted
from lidar elevations to calculate lidar height values. The
reduced density elevation-corrected lidar data were the
clipped to the extents of the precisely geo-referenced ground
plots. Finally, lidar metrics were calculated for each thinned
lidar dataset.

OLS regression

The relationship between measures of forest yield
(e.g., ba)y and hdar memcs was modeled using OLS
regression. OLS models were fitted using a two-step
procedure: (i} prior to the simulations predicior variables
were selected to include in the models, and (77} model
parameters were re-estimated using the fixed set of pre-
dictorq for each of 5000 random resamples. Model RMSE
{or / mo) values were calculated for each of the 5000 models
(fit {o the 5000 resampibs of data) using both the entire
population {(g,) and the observations in resample used
tor fit the model ( R‘VISE) We initially considered inclusion
of an automated variable selection algorithm in the simula-
tions to allow different variables for each simmlation, but
found that the choice of model-selection algorithm hxghly
infiuenced the results,

The sets of predictor variables used for regression were
selected by comparing the RMSEs of a variety of models
using all 120 observations and comparing their Bayesian
information criterion (BIC) scores, one of several common
bases for variable selection (Schwarz, 1978). Additionally,
we preferred simple models that included at least one height
guantile metric and one cover metric. Interactions between
variables selected for inclusion were also explored. No
transformmations of the responses were used because there
was only very mild heteroskedasticity, and model-assisted
inference does not require equal variance. The same set of
predictors was used for ba, vol, stems, and bm (htss,
covery 37, and cover; 3; X bty with a slightly different set
used for lor (hiqg, ht%, cover; ar, and cover; 17 X higs).

Unfortunately, model selection can result in overly
optimistic inferences “especially so when the pool of
candidate variables is large” (Shen et al., 2004). In our
case we attempted to protect ourselves from this optimism
by combining automated model selection with expert
knowledge. This reduces the chance that a best model is
selected due to an artifact in the data which may only
effectively represent a trend present in the sample. Fortu-
nately, for our sample it appears that many different related
sets of predictors (similar types of variables) fared compar-
ably in terms of BIC, RMSE, and simplicity; therefore. the
selection of one from the many comparable sets of variables
1s less hikely to represent an artifact of our sample.

648

Estimator performance

As previously mentioned, we used resampling simulations
to evaluate estimators for different corabinations of pulse
density and sample size. We developed sinmulation distribu-
tions for estimators for each combination of pulse density
and sample size using 5000 samples. For each simulation we
first sampled from our population of 120 elements to a
reduced sample size with replacement. For each sample we
estimated the population mean using the regression estima-
tor in Equation (1) and calculated deviations (or residuals)
of mean estimates from the known population mean

g, = [ —u (3

The ernpirical distribution of mean residuals was evaluated
using the mean (or bias)

5000
Z i
= @
! 5000
and standard deviation
o, = _ (5)
! {5000 -1
A smaller bias and standard deviation of mean residuals

ndicates superior performance for a
pulse density and sample size.

In addition to the mean, we also calculated the SE, for
each resample. The SE, values were used to evaluate QE as
an estimator of ¢, which we treat as a pophiat on
parameter.

SE, values for each sample were differenced from &

given configuration of

¢, = SE, — o, 6)

a

Again, a small bias

5000

(7
¢ NoOs000 - 1 ®)

of residuals indicates superior performance for the
analvtical variance estimator. Because the number of
samples is large, 5000, the variability in ¢, will be very
small and this source of variation was lgnmcd in Eguations
{6-8).

The sampling distributions of SE, values were also used
to look at coverage probability, which is the proportion of
confidence intervals that cover the population mean. Con-
fidence limits were based upon the student’s ¢ distribution

© 2012 CAS
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with n—p degrees of freedom, where p is the mumber of
parameters fitted in the regression model,

For each combination of pulse density and sample size we
also calculated the relative precision (RP)

where RP, 1s the RP of the regression estimator for ny,
observations and o3, 5 18 the variance of 5000 SRS sample
mean estimates for 120 plots.

Relative precision is analogous to design effect (Sdrndal
et al., 1992), which is used to roughly indicate the efficiency
{precision relative to sample size) of an estimation strategy.
Multiplication of relative precision reported in this study by
the ratio #,/120 will yield a value that is equivalent to design
effect for a given pulse density and sample size.

Resulis and discussion

Modeling effects

The magnitudes of variability in residuals (o) differed by
response variable, but the general behavior relative to pulse
density and sample size was similar for the five response
variables examined. Reduction in sample size cavsed a
noticeable increase in residual variability (Figure 2a).
Median o, and median RMSE from 5000 simulations are
shown for all of the variables for a fixed pulse density in
Table 2. The shaded curves in Figure 2 are empirical
densities created from 5000 simulations for each of the
combinations of pulse density and sample size. The effect of
sample size was slight for samples with 45 or more
observations. With fewer than 45 observations the median
of the simulation distribution of model RMSEs and the
widths of the simulation distributions both increased from
less than 1% in moving from 55 to 45 observations to 7% in

noving from 25 to 15 observations. This 18 the result of

(& LI
el
o R
«x
h=
oy
o«
«
8 ®
-~
o 3 i
: S
Lol S g - :
Fool o !
% - i
A ¢
-
D & Y ; 5
- SR TR SR T N T N
oL
wr
< 4
5
! H i { 3 { ¥ : v t ¥ ! v H { ¥ 2
o0G 892 038 3% (68 DR 4 2 1% 25 %F 45 B &f U5 &% 3% 08
Pulses i (85 phs) Retnpe: $lze €2 pudses )
Figure 2. Simulation distributions of model RMSEs in percent of the mean by (a} pulse density and (b) sample size
for stems. Black dots indicate the median RMSEs and the horizontal lines indicate bounds of 95% empirical
confidence intervals.

Table 2. Residual summary statistics, o.%, and RMSE %, for models fitted {for reduced sample sizes using lidar with 1 pulse/m”.

Sample size

Variable 15 25 35 45 55 65 75 85 95 105

ba (mifha) 303 (21.3) 28.1(23.4) 27.3 (24.3) 269 (24.8) 267 (25) 26.6(25.3) 26.5(254) 264 (25.5) 26.3 (35.6) 26.3 (25.7)
stems (ha}  64.2 (42.8) 59.1 (48.7) 57.5(50.8) 56.8 (52.3) 56.3(52.9) 56(53.3) 55.8(54) 55.7(54.1) 55.6(54.3) 55.5(54.6)
vol (m'/hay  36.5 (24.1) 341 (27.4) 33.1 (28.6) 32.6 (29.3) 32.3 (29.8) 32.1 (30.2) 31.9 (30.4) 31.8(30.5) 31.8(30.7) 31.7(30.8)
bm (ke/ha) 37.2(24.1) 342 (27.4) 33.2(28.7) 32.7(29.4) 324 (29.9) 32.2(30.1) 32(30.5) 31.9(30.6) 31.8(30.7) 31.8(30.9)
for (m) 154 (104) 142 (11.8) 13.8(12.3) 13.6(12.5) 135026 134 (127) 133028 133129 13329 133(12.9)
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having fewer observations with which to develop model
coefficient estimates. The effect of reduced pulse density on
RMSE was shght. The behavior shown for ba relative to
pulse density in Figure 2b is typical of the behavior for the
remaining response variables. The median of the simulation
distribution of RMSEs does not appear to change as a result
of reduction in pulse density until pulse density is reduced to
.05 pulses/m®. The variability of the simulation distributions
of RMSE values do, however, increase slightly for reduc-
tions in pulse density.

Reduced saraple sizes clearly resulted in increased o, values,
but they had a detrimental effect on the inferences that can be
made from model RMSEs For models fitted with 105
observations there was little difference between o, and
RMSE values. However, as sample size decreased the fit of
the model was purported to improve according to RMSE,
but i reahty dechined with respect to fitting the entire
population according to o, values. This phenomenon can be
seen in Table 2 from the increasing deviations between o, and
RMSEs to a maximum of over 50% for 15 observations for
vol and bm.

Mean estimator

The behavior of the regression estimator of the mean
relative to pulse density and sample size, shown in Figure 3
for lor, was similar to that observed for the remainin
response vanables. The sampling distributions of mean
residuals indicate that the mean estimator is nearly unbiased
and that, as we would expect, the variability of mean

residuals increases for smaller sample sizes (Figure 3b).
However, the precision is fairly constant from the largest
saraple size down to a sample size of 45 observations. Below
this threshold the widths of 95% Cls increase more
rapidly as sample size decreases. Reduction in pulse density
(Figure 3b) does not appear to affect the bias or variance of
the regression mean estimator.

SE performance

SEs varied methodically from a negative to a positive bias
as sample sizes increased from 15 to 105 plots (Figure 4b).
The trends in SE behavior displayed in Figure 4 when used
to estimate b 1s very similar to the trend observed when the
estimator was used for the other vanables. SEs were
positively biased for 55 or more observations, approximately
unbiased for 45 observations, and gradually increasingly
negatively biased for fewer than 45 observations. No effect
from pulse density was detected on the SEs (Figure 4a}.

The effect of variance estimator bias on confidence
intervals as a result of sample size was more dramatic.
There was a sharp decline in the percentage of 95%
asymptotic confidence intervals that cover the population
mean following reductions in sample size to fewer than 35
observations (Table 3). This is perhaps not surprising as
asymptotic properties are dependent upon having a reason-
ably large sample size, although the application will affect
which sample size is sufficiently large. Coverage probabilities
were nearly unchanged for different pulse densities (not
shown).
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Figure 3. Simulation distributions of differences between estimates of mean lor and the population mean for
different (a) pulse densities and (b) sample sizes. Black dots indicate the medians of differences and the horizontal
lines indicate bounds of 95% empirical confidence intervals.
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Relative precision

Relative precision varied for a given sample size amongst
the response vanables (Table 4), but the precision was not
affected by pulse density (not shown). Our primary interest
i relative precision was the region where relative precision {8
equal to or smaller than 1.0. This is the region where the
regression estimator provides greater or equal estimation
precision than with 120 plots alone. Each response variable
was sufficiently correlated with lidar metrics to yield some
gain in precision from using the regression estimator. The
threshold at which design effect was less than 1.0 varied
from 35 to 75 plots. For sample sizes of 75 observations or
more, regression estimation was more precise than plot-only
estimnation on average for the forest inventory variable stems,
Table 3. Coverage probabilities by sample size for 1 pulse/m? for
analytical $5% confidence intervals.

Coverage probability

Sample siz ba stems vol bm lor
i5 0.80 0.79 0.79 0.79 0.81
25 (.88 0.87 0.28 0.87 0.88
35 0.90 0.91 $.90 0.91 .90
45 0.92 0.93 0.92 0.91 0.92
55 0.93 (.95 (.92 0.93 $.93
65 0.93 0.95 0.94 0.93 0.94
75 0.94 0.9 (.94 0.95 (.95
85 0.94 (.97 .95 0.95 $.95
95 0.95 0.97 0.95 0.96 0.96
105 0.95 0.98 $4.95 0.96 0.96

© 2012 CAS

the variable that fared poorest. The results for pulse density
were not reported because they do not appear to have any
effect on relative precision for the densities examined.

Discussion

Pulse density

The effect of reduction in pulse density on estimation and
inference in a model-assisted nventory with hdar was
assessed in several ways. We looked at the effect of pulse
density on model RMSE, on mean estimation precision, and
on the precision of the SEs. The reduction in information
present in Jower density data caused model RMSE two

Table 4. Relative precision for regression estimates by sample size
for 1 puisefim™.

Samiple size ba stems vol bm lor
15 2.31 6.51 2.52 294 295
25 P19 3.31 1.31 1.49 .39
35 0.81 2.24 (.88 1.01 0.94
45 0.61 1.70 0.67 0.76 0.71
55 0.49 1.37 0.53 (.61 0.57
65 0.41 1.14 0.45 0.51 0.48
75 (.35 0.98 (.38 0.44 0.41
85 0.31 0.86 0.34 0.38 0.36
95 0.28 0.77 0.30 0.34 0.32
105 0.25 0.69 $.27 0.31 0.29

Wote: The denominator sample size for relative precision was fixed
at 120.
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increase slightly, However, the effect of reduction in pulse
density was so small that it did not carry through to impact
inference. There was no observed effect of pulse density on
mean estimators. Although we demonstrated 1t empirically,
this result can also be inferred because residual variability is
for the most part not affected by pulse density. If residual
variability is not affected by pulse density then the
variability of mean estimates will not be affected by pulse
density. Furthermore, any effect of pulse density on the
variability between mean estimates will be less than the
small observed effect of pulse density on residual variability
as the effect is reduced by approximately /n on average,
which can be seen in the denominator of our SE formula. We
note too that because our analysis included a step for
creation of a new DTM from the thinned ldar, our
inferences can be applied conservatively to cases where a
high-goality DTM is already available.

The empirical study by Parker and Glass (2004) per-
formed with .5 and | m lidar pulse spacings corroborates
our results in that they did not find an effect of pulse density
on estimation precision when using a double samplin
estimator, although they locked at a much smaller range
of densities, We are not aware of any other studies that detail
the performance of model-assisted estimators relative to
pulse density. As previously mentioned, there are a number
of studies that have looked at model precision relative to
pulse density for forest yield variables. In four studies of
particular relevance, two of the studies found increased
RMSE as a result of Jower pulse density (Magnusson et al.,
2007, Gobakken and Nasset, 2008}, while two others did
not (Holmgren, 2004; Maltamo et al., 2006). We found that
there was a slight but negligible effect of pulse density on
model RMSE. The discrepancy between our findings and
other findings may result because there are substantial
methodological differences between our study and other
studics.

The first methodological difference we noted between this
and other studies was that we created highly smoothe
DEMSs. Smoothed BEMSs have less detail, but they appear to
be less susceptible to irregularities like pits and spikes.
Secondly, our plot size was larger than the plots used in the
studies that found a noticeable density effect. For the lowest
pulse density we examined there were on average 40 pulses
per plot, which is double or more the number of returns for
alternate studies that encountered a density effect. The
sample statistics used for this study, including percentiles
(Serfling, 1980) and ratios, are consistent statistics; this
means they asymptotically approach the true population
parameter as the sample size increases. 1t 18 likely then that
sample statistics calculated for our plots with greater area
achieved greater stability for a given pulse density than was
observed in studies that detected a density effect with
smaller area plots.

An important consideration with regards to Hdar is that
forest inventory is only one of many potential applications
of lidar. In some instances lidar may be used for a great

652

mumber of applications including detailed DTM extraction,
individual tree segmentation, canopy surface modeling, and
others. For alternative uses a reduced pulse density may have
drastic repercussions on what is feasible. For example, it is
highly unlikely that accurate individual tree segmentation is
feasible with .05 pulses/m”. However, when forest inventory
is the primary concern and the cost of mobilization is not
the bulk of the hidar acquisition cost, acquiring reduced
pulse density wall-to-wall lidar appears to be a highly viable
option to reduce the cost of the acquisition without affecting
estimation precision for the variables we examined.

Sample size

As was expected from Equation (2), reductions in sample
size had a deleterious effect on the precision of model-
assisted estimates. More importantly, reductions in sample
size also affected the validity of inferences about model fit
and about the sampling distribution of the model-assisted
mean estimator. The mmpact on modeling inferences was
demonstrated by looking at model RMSE values relative to
g, values. Althongh models on average performed worse in
predicting values for the population for reduced sample
sizes, according to o, values, RMSE values would indicate
that model performance improves for smaller samples. The
same effect was observed for the coefticient of determination
(R%), although we do not present those results here because
nearly the same information 1s captured by RMSH, These
results demonstrate that RMSE and R” are not very useful
criteria to evaluate modeling strategies, especially for small
samples, a well-known phenomenon in regression modeling.
If, for example, the data were stratified and the models were
developed separately by strata the results would appear
better on average according to RMSE, but the improvement
may in fact be the result of optimistic RMSE values related
to having a small sample.

The optimism observed in RMSE values for small
samples also resulted in bias in SE values for small samples,
which are a function of model RMSE. The biases were
sraall, but coverage probabilities were appreciably biased for
small samples. This result indicates that for small sample
sizes the SE may provide misleading results. Ideally we
prefer unbiased estimators, but even positively biased
(estimates of variability are too large on average) estimators
of vanability can be acceptable, within reason. However,
with a negatively biased {too small} variance estimator, the
probability that a confidence interval covers the troe
population parameter will be less than expected. While
our results are useful in demonstrating the risk involved in
making inference from small samples, we cannot guarantee
that the threshold observed here will bold exactly or
approximately for other studies. It should, however, serve
as a cautionary note and provide further motivation to
obtain an adequate sample. In practice it may also prove
useful to compare analvtical and simulation confidence
intervals. This would help assess the bias of analytical

© 2012 CAS
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variance estimators as well as non-normality and skewness
in the resampling distribution of mean estimators.

In some instances users will hope to offset the cost of a
lidar acquisition by reducing the number of field plots that
are used in forest inventory. To address this question we
calculated the relative precision of the regression estimator
compared with the plot-only estimator for an SRS design.
If we reduce the number of field plots to 75 for use with
lidar, this is comparable with the plot-only estimator with
120 plots for the response variable sterns. This result is
indicated by having a relative precision of 1.0 for this
variable for 75 plots, If another of the examined variables is
of primary interest, then our estimates indicate that the
sample size can be reduced much further to a sample size of
45, although confidence intervals may not be sufficiently
reliable for this number of plots.

Limitations

A weakness in this study, common to studies that estimate
forest inventory variables, is some variables that were treated
as if they were measured, such as volume and biomass, were
actually estimated with allometric models. The effect of
using predicted biomass and volume on variance estimators
1s not something that this or other similar studies consider
when estimating variability. However, the variables esti-
mated with allometric models are highly correlated with ba.
The results for ba can serve in some sense as a reality check
on results for bm and vol.

A characteristic of this study that differs from some other
studies using lidar to estimate forest attributes is that
relatively few heights were measured for each plot. This is
the result of using data from an operational forest inventory
with a set measurerent protocol mstead of tailoring a new
set of field measurements for this study. This resulted in
farger model RMSEs for vol, bm, and lor than we see for ba
even though vol, bm, and lor are more closely related to
height, the forest characterisiic represented by Hdar pre-
dictors. If we measured each tree height it would likely
reduce the residual variability of our model it and increase
the precisions of total and mean estimators for vol, bm, and
for. As a result the standard errors reported here are fikely
conservative for a given pulse density and sample size
relative to what could be obtained using data from
inventories in which more tree heights were measured,
although this will not introduce bias to our analysis.

Additionally, our field data does not include trees smaller
than 8 inches. While this is problematic for management
reasons if only merchantable trees are considered, the effect
on variance estimates and hence our inference relative to
pulse density and sample size i3 neghgible. As the values ba,
vol, and bm are exponentially related to height and diameter
{which are relatively small for these trees), the magnitude of
the contribution of small trees to these vanables (and lor, a
function of ba and height) is also very slight. If there is
interest in representing numbers of small trees, then clearly

© 2012 CAS

the effect on sterns is very pronounced because small trees
are weighted equally with large trees for this response
variable.

Conclusions

Lidar is a tool that has gained popularity for remote
measurement and monitoring of natural resources. Whether
there is benefit to using lidar for forest inventory depends in
large part on characteristics specific to each forest. This
study should facilitate examination of whether using lidar
will provide a gain in precision over an alternative estima-
tion strategy for a specific forest and provide indication of
an appropriate sample size and pulse density. Fortunately,
almost no effect of pulse density was observed on model
precision. We saw equivalent precision with .05 pulses/m?
as with 3 pulses/m’. In contrast, a sample size effect on
residual vanability was evident. However, the majority of
the influence from sample size on estimation precision
resuited from the sampling property that as sample size
decreases the variability of mean estimates increases propor-
tional to /n. Unfortunately for inference for small samples,
we found that central limit theorem based confidence
intervals were too narrow for small samples. They also
affected how well RMSE values represent model perfor-
mance for the population. If fewer than 75 observations are
used, caution should be taken with respect to inference from
confidence intervals and model RMSE values.
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