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Abstract

Microclimate variables such as air temperature and relative humidity influence habitat conditions and ecological processes 
in riparian forests. The increased relative humidity levels within riparian areas are essential for many plant and wildlife 
species. Information about relative humidity patterns within riparian areas and adjacent uplands are necessary for the 
prescription of effective buffer widths. Relative humidity monitoring is more expensive than temperature monitoring 
due to greater sensor costs, and it is primarily conducted for research purposes. To make relative humidity monitoring 
in riparian areas more cost effective, we explored modeling relative humidity as a function of air temperature and other 
covariates using linear fixed and linear mixed effects models applied to two case studies. Localizing predictions for stream 
reaches using a linear mixed effects model or a linear fixed effects model with correction factor improved model predic-
tions, especially when large variability among stream reaches was present. A minimum of three to five relative humidity 
measurements per stream reach seem sufficient to estimate the random stream reach effect or correction factor for the 
linear mixed and linear fixed effects models, respectively. Including covariates that describe distance to stream and canopy 
cover in addition to air temperature improved model performance. Although further model refinement is probably needed 
to allow detection of small changes in relative humidity associated with changes in stand structure from partial overstory 
removal, the models developed provide a means towards decreasing the costs of monitoring microclimates of importance 
to riparian area function.

Keywords: riparian microclimate; Pacific Northwest; linear mixed effects model; localized prediction; subsampling 

Northwest Science, Vol. 87, No. 1, 2013

1Author to whom correspondence should be addressed. 
Email: bianca.eskelson@oregonstate.edu

Introduction

Riparian areas within forest landscapes are distinct 
in supporting relatively high levels of biodiversity 
(Olson et al. 2007). The combination of hydrologic 
and fluvial processes, disturbance regimes, and the 
exchange of energy and matter among terrestrial 
and aquatic systems (Gomi et al. 2002, Nakano 
and Murakami 2001) contributes to diverse habitats 
and complex trophic structures within riparian 
areas. For seasonally dry temperate forests, mi-
croclimates are often distinctly different between 
riparian areas and the adjoining terrestrial forest; 
riparian areas with greater soil moisture or open 
water surfaces tend to be cooler and more humid 
than surrounding uplands (Rykken et al. 2007, 

Brooks and Kyker-Snowman 2009). Influences 
of clear cutting and partial overstory removal on 
stream and riparian microclimate has received 
much attention, and the interest has expanded 
upstream to encompass the extensive but small 
and often non-fish bearing perennial or ephemeral 
headwaters streams (Chen et al. 1999, Brooks and 
Kyker-Snowman 2009, Anderson et al. 2007).

Headwater plant and animal communities can 
demonstrate a high degree of spatial structuring 
within a relatively compressed area (Pabst and 
Spies 1998, Sheridan and Olson 2003, Sheridan 
and Spies 2005, Olson and Weaver 2007). This 
spatial structuring of communities is likely associ-
ated with gradients in microclimate, particularly 
air temperature and relative humidity, as a func-
tion of lateral distance from stream, which for 
complex, steep topography implies gradients with 
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height above stream (Pabst and Spies 1998, 
Sheridan and Spies 2005).

Monitoring of stream channel and riparian 
area relative humidity has been conducted 
primarily as a research activity to characterize 
habitat associations and ecosystem processes, 
which may partly be due to the high costs of 
sensors that measure relative humidity. To 
use relative humidity for forest management 
or regulatory purposes, effective and efficient 
means for characterizing and monitoring 
relative humidity in these biologically diverse 
riparian settings need to be identified.

Strong negative correlations between rela-
tive humidity and air temperature are often 
observed in forest ecosystems (Chen et al. 
1999). Strength of association arises in part 
from the physical characteristics of water vapor 
as a component of air (Jones 1992) and in part 
from the biophysical process of transpiration 
(Landsberg 1986). Given relative humidity 
and air temperature are strongly correlated, 
the question arises whether this strong rela-
tionship can be exploited in modeling relative 
humidity for locations for which measured 
air temperature information are available. If 
relative humidity can successfully be mod-
eled, the number of relative humidity sensors 
within a stream reach could be reduced, thus 
reducing the cost of relative humidity moni-
toring. To our knowledge, no work has been 
done to model relative humidity as a function 
of air temperature and other covariates with 
the purpose of reducing the costs of relative 
humidity sampling. Our objectives were to 
use data from two case studies to:

a) provide an overview on summer correlations 
between mean daily minimum relative hu-
midity (RHmin) and mean daily maximum air 
temperature (Tamax) across stream reaches and 
watersheds;

b) assess the abilities of linear fixed and linear 
mixed effects models to predict RHmin as a 
function of Tamax and other covariates; and

c) compare accuracy and precision of RHmin pre-
dictions under varying sample size, and discuss 
the impact on sampling and monitoring costs.

Methods

Our study uses microclimate data collected in 
eight stream reaches of the Trask watershed in the 
Coast Range in northwest Oregon (Trask Study 
Plan 2008) and eight stream reaches that are part 
of the Density Management Study (DMS; see 
Cissel et al. 2006) in the central Oregon Coast 
Range and western Cascade Range (Figure 1).

Trask Data

The Trask watershed in northwest Oregon is part 
of a paired watershed study to evaluate the effects 
of forest harvest (Trask Study Plan 2008).  During 

Figure 1. Map showing the location of the Trask watershed and the 
Density Management Study sites. 
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the summer of 2009, microclimate sensors (Hy-
grochron i Button, model DS1923, Maxim Inte-
grated Products, Inc., San Jose, CA) were deployed 
at eight stream reaches that are part of the paired 
watershed study. Stream reaches were located 
along second order headwater streams and at the 
downstream portion of the watersheds or basins that 
were to be harvested or serve as reference basins. 
The stream reaches were selected to have upstream 
areas of approximately 35-55 ha. At every stream 
reach, six transects were located perpendicular to 
the stream (three on each side). The location of 
the first transect was randomly selected and the 
remaining transects were then installed 40 to 60 
m upstream of the previous transect, alternating 
on stream sides. Two microclimate sensors were 
deployed on each of the six transects 12 m apart, 
with the first sensor having a random distance 
between 4 m and 8 m to the stream. The sensors 
were rotated among the eight stream reaches, 
and twelve sensors were deployed at each stream 
reach for approximately four consecutive weeks 
or longer (Table 1). Air temperature and relative 
humidity were measured at 1 m above ground 
every hour. Mean daily estimates of the minimum 
relative humidity (RHmin) and the maximum air 
temperature (Tamax) were computed for each sensor 
for the duration of the sensor deployment (Table 

1). The Trask data consist of n = 95 RHmin and 
Tamax observations, because one sensor in stream 
reach RK2 failed during deployment.

Density Management Study Data

The DMS is an operational-scale multidisciplinary 
evaluation of alternative thinning regimes ap-
plied to 35-65 year-old managed Douglas-fir 
(Pseudotsuga menziesii [Mirb.] Franco) stands 
in headwater forests of western Oregon. Study 
treatments are comprised of three thinning intensi-
ties and unthinned references. Embedded within 
overstory treatment units are small headwater 
streams buffered to an array of widths (Cissel et 
al. 2006). In our study we report on microclimate 
data collected from a random sample of eight 
stream reaches distributed among three DMS 
study locations (Table 1). Reaches were defined 
as unbranched stream segments of at least 100-
m length between nodes in the stream network 
and contained entirely within the boundaries of 
a single upland overstory treatment unit. Sampled 
stream reach buffers ranged from 25-145 m width, 
side slopes ranged from 18-51% and bankfull 
stream width ranged from approximately 0.3 
m to 2.6 m.

TABLE 1. Sensor deployment dates and number of sensors (ni) in the eight Trask and DMS stream reaches.

  Sensor   Sensor
Trask  Deployment DMS  Deployment
Stream Reach ni in 2009 Stream Reach ni in 2006

Gus Creek 1 (GS1) 12 7/10 – 8/6 Bottom Line,  64 9/5 – 9/11
   reach 13 (BL13)

Gus Creek 3 (GS3)  12 7/7 – 8/13 Keel Mountain, 65 8/29 – 8/31
   reach 17 (KM17)

Pothole Creek 2 12 7/25 – 8/21 Keel Mountain, 61 7/19 – 7/24
(PH2)   reach 18 (KM18)

Pothole Creek 3  12 7/28 – 8/27 Keel Mountain, 50 8/15 – 8/23
(PH3)   reach 19 (KM19)

Pothole Creek 4  12 8/19 – 9/30 Keel Mountain, 65 8/24 – 8/29
(PH4)   reach 21 (KM21)

Rock Creek 2 11 8/22 – 9/30 OM Hubbard, 65 9/12 – 9/19
(RK2)   reach 36 (OM36)

Rock Creek 3  12 8/28 – 9/30 Ten High, reach 46  62 8/8 – 8/16
(RK3)   (TH46)

Upper Main 3  12 8/7 – 9/30 Ten High, reach 75  64 8/1 – 8/7
(UM3)   (TH75)
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A 72 m x 72 m (0.518 ha) sampling plot, cen-
tered on the central axis (center line, CL) of the 
channel was established at a random longitudinal 
position along each of eight stream reaches. Micro-
climate (air temperature and relative humidity) was 
monitored along 72-m transects that traversed the 
stream perpendicular to the CL. For each stream 
reach two sets of transects were monitored: 1) 
two transects located at 32 and 68 m along the 
CL with sample points spaced at 3 m horizontal 
distance intervals; and 2) two transects randomly 
located within 0-32 m and 32-64 m intervals along 
the CL with sample points distributed at 10 m 
horizontal distance intervals along each transect 
(see Eskelson et al. 2011). In addition to horizontal 
distance, the slope distance, and height above 
stream (HAS [elevation above the stream surface]) 
was determined for each sample point. Canopy 
transmittance of solar energy was estimated us-
ing light detection within a vertically-oriented 
hemispherical field of view above each sample 
point. Measurements of diffuse, non-intercepted 
radiation (DIFN) at 1 m height above ground, 
relative to the potential received above the canopy 
for the geographic location, were made using a 
plant canopy analyzer (model LAI-2000, LI-COR 
Biosciences, Lincoln, NE).

Air temperature and relative humidity data were 
collected using integrated 3-channel data loggers 
(models GPSE 101 203 and GPSE 301 203, A.R. 
Harris Ltd., Christchurch, New Zealand). The 
air temperature/relative humidity sensors were 
positioned 1 m above ground with an inverted 
1-liter ventilated plastic cup providing shade. Data 
were logged at 20 minute intervals. Sensors were 
deployed to the eight reaches at different times 
in mid- to late-summer for 3-8 consecutive days 
(Table 1). For analysis, data from individual sen-
sors were initially reduced to hourly values and 
truncated to the warmest 3-day period sampled 
for each reach. Data were then reduced to 3-day 
averages of daily maximum hourly air temperature 
(Tamax) and daily minimum hourly relative humid-
ity (RHmin), which were used in assessments of 
temperature-relative humidity correlation and for 
modeling relative humidity as a function of air 
temperature. Due to data logger failures, 50 to 65 
sample points per stream reach were independently 

monitored, resulting in n = 495 observations for 
the DMS data.

Models

Three modeling strategies were used to predict 
RHmin as a function of Tamax and other covariates. 
The first modeling strategy was a linear fixed 
effects model (LFEM), for the second strategy 
a stream reach correction factor was calculated 
and applied to the predicted values from LFEM 
(LFEMcf), and the third strategy was a linear 
mixed effects model (LMEM) with a random 
intercept. All models were fit with the R software 
(R Development Core Team 2011) using the func-
tions gls() and lme().

Linear Fixed Effects Model—The linear 
fixed effects model (LFEM) assumes independent 
observations within and among stream reaches. For 
the Trask data, Tamax was the only covariate in the 
model, whereas HAS and DIFN were additional 
covariates for the DMS model. Because of the 
small number of observations available for each 
stream reach in the Trask, additional covariates 
were not included in the models for the Trask. The 
nested data structure violates the assumption of 
independence of the LFEM model; it is included 
in our analysis to show the implications of deci-
sions made using the model when the assumption 
of independence is violated. A power variance 
function accounted for heteroscedasticity. The 
residuals showed weak departure from normality. 
For the Trask the residuals were slightly skewed 
to the right and for the DMS they had heavy tails. 
The impact of the weak departure from normal-
ity on the model was considered negligible. For 
model details see Appendix A1.

Linear Fixed Effects Model with Correction 
Factor—If a subsample (nm) of RHmin values is 
known for a new stream reach m, the subsampled 
information can be used to localize RHmin predic-
tions for the new stream reach with a correction 
factor k* 

m  (Strategy 4 in Temesgen et al. 2008). 
This model will be referred to as LFEMcf (see 
details in Appendix A2). LFEMcf violates the as-
sumption of independence when the model is fit 
and tries to account for the nested data structure 
in the prediction process.
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Linear Mixed Effects Model with Ran-
dom Intercept—The linear mixed effects model 
(LMEM) includes a random stream reach effect bi 
which allows the intercept to vary by stream reach, 
thus localizing RHmin predictions in new stream 
reaches (see Appendix A3 for details). LMEM 
accounts for the nested data structure. As with 
LFEM and LFEMcf, a power variance function 
accounted for heteroscedasticity.

Model Validation

Correlations between RHmin and Tamax—Scat-
terplots of RHmin versus Tamax and Pearson’s 
correlation coefficient are provided to show the 
relationship of RHmin and Tamax within and among 
stream reaches in the Trask and DMS data sets.

Predictive Performance of Models—The 
predictive performance of the models was com-
pared using leave-one-out cross-validation (e.g., 
Temesgen et al. 2008, Garber et al. 2009). One 
stream reach at a time was used for evaluation 
and the remaining n-1 stream reaches were used 
to fit the models (LFEM, LFEMcf, LMEM). The 
RHmin values for all observations in the evaluation 
stream reach were predicted based on the model 
coefficients from the model fit of the n-1 stream 
reaches. For LFEMcf and LMEM all observations 
of the evaluation stream reach were used to estimate 
the correction factor and random stream reach ef-
fect respectively. Bias and root mean square error 
(RMSE) for each stream reach were calculated 
(see Appendix A4 for equations). 

Predictive Performance by Subsample 
Size—To evaluate model performance by dif-
fering subsample size, a simulation study was 
performed, for which n-1 stream reaches were 
used to fit the models as described above. The 
evaluation stream reach was considered to be a 
new stream reach m, from which a random sample 
of size nm of RHmin observations were taken to 
estimate the correction factor and random stream 
reach effect to localize the model. The model 
performance was then evaluated based on the 
remaining mi ( = ni -nm) observations in stream 
reach m and bias and RMSE were calculated as 
in Equations 8 and 9 with the only difference 
of ni being replaced by mi. Subsample size nm 

ranged from 1 to 6 for the Trask and from 1 to 20 
for the DMS data. The random sampling process 
was performed 200 times and prediction RMSE 
and bias were calculated for each iteration and 
averaged across the 200 iterations. In addition, 
frequency distributions of the prediction RMSE 
of the 200 iterations were prepared to display the 
change in the range and variability of prediction 
RMSE for LMEM and LFEMcf with increasing 
subsample size (Figures 4 to 7).

Results

Correlations between RHmin and Tamax

RHmin decreased with increasing Tamax in the DMS 
and Trask stream reaches (Figure 2). The DMS 
data exhibited larger variability within stream 
reaches and among stream reaches than the Trask 
data (Figure 2). For the Trask watershed the co-
efficient of correlation is r = -0.94 based on n = 
95 observations across the eight stream reaches, 
with r values ranging from -0.39 to -0.95 within 
the eight stream reaches (Table 2). For the DMS 
data, the r values for the eight stream reaches 
range from -0.42 to -0.91with an overall r = -0.71 
for n = 495 across the eight stream reaches (Table 
2). There was some curvature in the relationship 
between RHmin and Tamax for the DMS stream 
reaches KM21 and TH46 (Figure 2).

Predictive Performance of Models

For the DMS data, including HAS and DIFN as 
covariates in the model in addition to Tamax de-
creased mean RMSE and thus improved model 
performance.

The predictive abilities of the three models 
(LFEM, LFEMcf, and LMEM) substantially dif-
fered in terms of RMSE and bias, especially for the 
DMS data (Table 3). For both the Trask and DMS, 
LFEMcf resulted in the smallest RMSE followed 
by LMEM. For the Trask data, the cross-validation 
RMSE of LFEM was 3.4% RHmin. Including the 
correction factor (LFEMcf) or including a random 
stream reach effect (LMEM) decreased the RMSE 
by 0.6% RHmin (18%) and 0.3% RHmin (9%), re-
spectively. The bias of the LFEM (-0.27%) was 
also decreased to 0.13% and 0.08% for LFEMcf 
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and LMEM, respectively (Table 3). For the DMS 
data, the cross-validation RMSE of LFEM was 
10.60% RHmin and LFEMcf and LMEM improved 
by 6.2% RHmin (58%) and 6.4% RHmin (60%), 
respectively. The 0.5% bias of LFEM decreased 
to -0.04% and 0.01% for LFEMcf and LMEM, 
respectively (Table 3).

If no subsample of RHmin measurements is 
available in a new stream reach to estimate the 
random stream reach effect, the random effect 
could be set to zero and only the fixed parameters 

Figure 2. Mean daily minimum relative humidity (RHmin) vs. mean daily maximum air (Tamax) of the eight Trask (left) and DMS 
(right) stream reaches. Note scale differences in x and y axes.

TABLE 2. Correlation coefficients (r) between mean daily minimum relative humidity (RHmin) and mean daily maximum air 
temperature (Tamax) measured at approximately 1 m above ground for the n sensors available at each stream reach. 
95% confidence intervals are given in parentheses.

 ___________________Trask___________________ _____________________DMS____________________
Stream Reach n r Stream Reach n r

 All  95 -0.94 (-0.79, -0.94) All  495 -0.71 (-0.66,-0.75)

 GS1 12 -0.95 (-0.83, -0.99) BL13 64 -0.80 (-0.69, -0.87)

 GS3 12 -0.39 (-0.24, -0.79) KM17 64 -0.42 (-0.19, -0.60)

 PH2 12 -0.93 (-0.76, -0.98) KM18 61 -0.86 (-0.78, -0.91)

 PH3 12 -0.95 (-0.83, -0.99) KM19 50 -0.68 (-0.50, -0.81)

 PH4 12 -0.81 (-0.44, -0.94) KM21 65 -0.91 (-0.86, -0.94)

 RK2 11 -0.84 (-0.48, -0.96) OM36 65 -0.48 (-0.27, -0.65)

 RK3 12 -0.92 (-0.73, -0.98) TH46 62 -0.86 (-0.78, -0.91)

 UM3 12 -0.64 (-0.10, -0.89) TH75 64 -0.84 (-0.75, -0.90)

TABLE 3. Cross-validation bias and root mean square error 
(RMSE).

 ____Trask____ _____DMS___ _
Prediction RMSE Bias RMSE Bias
method (%) (%) (%) (%)

LFEM 3.4 -0.27 10.6 -0.50

LFEMcf 2.8 -0.13 4.2 -0.04

LMEM 3.1   0.08 4.4   0.01

LMEM, fixed 3.6 -0.48 9.7 -0.12
 component
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would be used for predictions. Using only the fixed 
parameters of the LMEM model for predictions in 
a new stream reach results in biased predictions 
and RMSE values similar to the LFEM model 
(Table 3, ‘LMEM, fixed component’). The LMEM 
fixed component model resulted in larger RMSE 
and bias values than LFEM for the Trask. For the 
DMS data, the RMSE of the LMEM fixed com-
ponent model was close to the RMSE of LFEM 
but the bias was not quite as large as the bias for 
LFEM (Table 3).

Predictive Performance by Subsample 
Size

For the Trask, at least three subsamples of RHmin 
were needed in a stream reach for LMEM to 
achieve the same or smaller prediction RMSE as 
LFEM. Even with more than three subsamples, 
the prediction RMSE only improved slightly over 
that of LFEM (Figure 3). Similar to LMEM three 
or more subsamples were needed for LFEMcf to 
improve prediction RMSE. The LFEMcf predic-
tion RMSE was greater than that of LMEM for 
a subsample of one but smaller for subsamples 

of two or more (Figure 3). Both LMEM and 
LFEMcf provided less biased predictions than 
LFEM (Table 4). With only one RHmin subsample 
LMEM resulted in less biased predictions than 
LFEM, and the bias was negligible with the 
use of three or more subsamples to estimate the 
random stream reach effect. For three and more 
RHmin subsamples LFEMcf resulted in a larger 
bias than LMEM (Table 4).

For the DMS data, the use of one RHmin sub-
sample for estimating the random stream reach 
effect and correction factor, respectively, improved 
the prediction RMSE and bias by almost 50% for 
both LMEM and LFEMcf (Figure 3, Table 4). For 
subsample sizes greater than 5, the improvements 
in prediction RMSE were negligible with further 
increase in subsample size (Figure 3). LFEMcf 
resulted in slightly smaller prediction RMSE values 
than LMEM when subsample sizes were greater or 
equal two (Figure 3). For LMEM the bias decreased 
with subsample sizes from one through four and 
was negligible when five or more subsamples 
were available for estimating the random stream 
reach effect. The bias of LFEMcf showed similar 

Figure 3. Predictive performance (root mean square error, RMSE) of the linear mixed effects (LMEM) and linear fixed effects 
model with correction factor (LFEMcf) for Trask (left) and DMS (right). Solid line: RMSE of linear fixed effects model 
(LFEM).
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behavior but tended to be somewhat greater than 
the LMEM bias (Table 4).

The frequency distributions of the predic-
tion RMSE from the 200 simulations illustrate 
changes in the range and variability for LMEM 
and LFEMcf with increasing subsample size 
(Figures 4 to 7). For the Trask data, the variability 
in prediction RMSE is smaller for LMEM for 
subsample sizes of nm = 1, 2 and 3. The range 
in prediction RMSE also tends to be smaller for 
LMEM with the most pronounced difference for 
nm = 1 (Figures 4 & 5). For LFEMcf with nm = 1, 
most prediction RMSE values are greater than the 
cross-validation RMSE of LFEM, which changes 
with increase in nm, mostly producing prediction 
RMSE values smaller than the cross-validation 
RMSE of LFEM for nm = 6 (Figure 5). A similar 
trend is observed for LMEM (Figure 4) but not as 
pronounced as for LFEMcf. For the DMS data, the 
frequency distributions of the prediction RMSE 
from 200 simulations clearly narrow with increas-
ing subsample size nm for both LMEM (Figure 6) 
and LFEMcf (Figure 7). The variability and range 
in prediction RMSE over the 200 simulations 
tends to be smaller for LMEM than for LFEMcf, 
with the largest differences for small subsample 
sizes, especially nm = 1 (Figures 6 and 7). For nm 
= 1, LFEMcf produced prediction RMSE values 
larger than the cross-validation RMSE of LFEM. 

As the subsample size nm increases both LMEM 
and LFEMcf produce more RMSE values that are 
smaller than the cross-validation RMSE value of 
LMEM (Figures 6 & 7). 

Discussion

Correlations between RHmin and Tamax

The dry-season relationship between RHmin and 
Tamax was more variable for the DMS than the 
Trask. This is attributed to the duration and timing 
of the microclimate sensor deployment as well as 
to the proximity of the stream reaches in the Trask. 
While RHmin and Tamax averages for the Trask were 
based on at least four weeks of measurements 
and sensor deployment overlapped with three 
other stream reaches in a given week, the DMS 
averages were based on only three days without 
concurrent sensor deployment across reaches. The 
eight stream reaches in the Trask belonged to the 
same watershed while the DMS stream reaches 
were located in four different watersheds in the 
Oregon Coast Range. According to the observed 
data, the relationship between RHmin and Tamax 
is more variable among stream reaches if daily 
averages are based on short sensor deployment 
periods because only a small snapshot in time 
is captured for each stream reach, which can be 
strongly influenced by varying weather conditions. 

TABLE 4. Mean bias as function of the number of RH sensors (nm) subsampled to predict the stream reach random effect or the 
LFEM correction factor for the Trask (left) and DMS (right). 95% confidence intervals are given in parentheses. 

 ___________________Trask__________________ __________________DMS__________________
nm LMEM LFEMcf LMEM LFEMc

1 -0.18 (-0.23, -0.12) -0.01 (-0.07, 0.04) -0.26 (-0.44, -0.07)   0.27 (0.09, 0.46)

2 -0.06 (-0.12, -0.01) -0.06 (-0.12, 0.00) -0.28 (-0.42, -0.13) -0.13 (-0.27, 0.02)

3 -0.04 (-0.10, 0.03) -0.10 (-0.16, -0.04) -0.18 (-0.31, -0.06) -0.18 (-0.30, -0.06)

4   0 (-0.06, 0.06) -0.11 (0.17, -0.04) -0.10 (-0.21, 0.01) -0.17 (-0.28, -0.06)

5    0 (-0.07, 0.07) -0.17 (-0.24, -0.10) -0.03 (-0.12, 0.07) -0.09 (-0.18, 0.00)

6   0.03 (-0.04, 0.11) -0.15 (-0.23, -0.08) -0.02 (-0.12, 0.08) -0.10 (-0.20, 0.00)

7   -0.03 (-0.12, 0.06) -0.05 (-0.14, 0.04)

8   -0.03 (-0.12, 0.06) -0.05 (-0.14, 0.04)

9   -0.02 (-0.09, 0.06) -0.07 (-0.15, 0.00)

10      0 (-0.07, 0.07) -0.04 (-0.12, 0.03)

15   -0.02 (-0.09, 0.04) -0.05 (-0.12, 0.02)

20     0 (-0.06, 0.06) -0.05 (-0.11, 0.01)
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The observed data also suggest that the relationship 
between RHmin and Tamax is more variable among 
stream reaches if the deployment is not concurrent 
across stream reaches and the stream reaches cover 
a larger geographic range (e.g., belong to differ-

Figure 4. Frequency distribution of the root mean square error (RMSE) after 200 iterations 
for linear mixed effects model (LMEM) with different subsample sizes nm for the 
Trask stream reaches. The cross-validation RMSE of the linear fixed effects model 
(LFEM; solid line) and LMEM (broken line) based on all relative humidity values 
are given for comparison.

ent watersheds). If the deployment of sensors is 
concurrent across stream reaches within the same 
watershed, prevailing weather conditions result 
in comparable relationships between RHmin and 
Tamax among stream reaches. 
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Predictive Performance of Models

The improvement of model performance for the 
DMS data by including DIFN and HAS as co-
variates suggests that variables describing shade 
and streamside topography are able to explain 

Figure 5. Frequency distribution of the root mean square error (RMSE) after 200 iterations for 
the linear fixed effects model with correction factor (LFEMcf) with different subsample 
sizes nm for the Trask stream reaches. The cross-validation RMSE of the linear fixed 
effects model (LFEM; solid line) and linear mixed effects model (LMEM; broken 
line) based on all relative humidity values are given for comparison.

the relative humidity gradients in riparian areas 
when used in combination with Tamax. In contrast, 
Danehy and Kirpes (2000) working east of the 
Cascade in more xeric systems discerned little 
explanatory influence of canopy cover or basal 



50 Eskelson, Anderson, and Temesgen

Figure 6. Frequency distribution of the root mean square error (RMSE) after 200 iterations 
for the linear mixed effects model (LMEM) with different subsample sizes nm 
for the DMS stream reaches. The cross-validation RMSE of the linear fixed ef-
fects model (LFEM; solid line) and LMEM (broken line) based on all relative 
humidity values are given for comparison.
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Figure 7. Frequency distribution of the root mean square error after 200 iterations for 
the linear fixed effects model with correction factor (LFEMcf) with different 
subsample sizes nm for the DMS stream reaches. The cross-validation RMSE 
of the linear fixed effects model (LFEM; solid line) and the linear mixed effects 
model (LMEM; broken line) based on all relative humidity values are given 
for comparison.
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area in regression models describing gradients 
of relative humidity. They attributed this lack of 
influence on the highly variable, patchy distri-
bution of both understory shrubs and overstory 
trees in the pine-dominated forests. Our findings 
indicate that covariates that describe changes 
in overstory cover or other streamside stand 
structure attributes may indeed be used to model 
the impact of management activities on RHmin 
in riparian areas west of the Cascades if Tamax 
information is available.

Covariates such as channel orientation (aspect), 
elevation, topography (e.g., influences of steep 
valley confinement), and the occurrence of rain 
are expected to influence RH and Tamax. Because 
these are covariates at the stream reach level, their 
impact should be captured by the random stream 
reach effect of the models. Hence, none of these 
covariates were included in the models.

Substantial differences were found among the 
predictive abilities of the alternative strategies 
examined for developing RH equations. LFEMcf 
and LMEM outperformed LFEM in terms of ac-
curacy and precision because LFEM ignores the 
nested data structure and assumes that all RHmin 
measurements are independent, whereas LFEMcf 
and LMEM account for the nested data structure 
and allow localization of the RHmin model for 
each stream reach. RMSE and bias of LFEM were 
greater for the DMS than the Trask because the 
DMS data exhibited greater variability among 
stream reaches than the Trask data. Hence, ac-
counting for the nested data structure by using a 
correction factor (LFEMcf) or including a random 
stream reach effect (LMEM) resulted in greater 
improvement in terms of accuracy and precision 
for the more variable DMS data.

LFEM had substantial bias for both the Trask 
and DMS data. Therefore, LFEM should not be 
used for modeling RHmin across stream reaches 
since it ignores the nested data structure. The RHmin 
model should be localized for each stream reach 
with subsampled information using LFEMcf or 
LMEM. Even though LFEMcf resulted in slightly 
smaller RMSE values than the LMEM for both 
the Trask and DMS data, the less biased LMEM is 
superior to the LFEMcf, which can still be biased, 

even though the bias is smaller in comparison to 
that observed for LFEM without correction factor.

It is surprising that LMEM performed slightly 
worse in terms of RMSE than LFEMcf. Temesgen 
et al. (2008) applied nonlinear models to predict 
tree heights that were localized with subsampled 
tree heights. In their study the fixed effects model 
with correction factor performed worse than the 
mixed effects model. It is possible that the DMS 
and Trask data did not have enough stream reaches 
(8 each) as well as not enough observations within 
a stream reach available (12 for Trask, 50 to 65 for 
DMS) to reliably estimate the variance components 
in the mixed effects model framework. As found 
in previous studies (Monleon 2003, Temesgen et 
al. 2008), it is not recommended to use only the 
fixed components of a mixed effects model, if no 
subsamples are available, since this can produce 
worse predictions in terms of RMSE and bias 
than using a fixed effects model that ignores the 
nested data structure completely.

Predictive Performance by Subsample 
Size

Localizing the model with only one RHmin subsam-
ple improved the model performance substantially 
for the DMS data that exhibited larger variability 
among stream reaches. For the Trask data, which 
exhibited less variability among stream reaches, 
the model improvement was much smaller even 
when several subsamples were used for localiza-
tion of the model. Localizing the model based on 
only one or two subsamples can even decrease 
model performance in comparison to a fixed ef-
fects model that ignores the nested data structure 
if the data set exhibits little variability among 
stream reaches. Based on the results of our study, 
a minimum of three to five subsamples are needed 
to estimate the random stream reach effect or the 
stream reach correction factor, and that the model 
improvements will be greater when the variability 
among stream reaches is high.

The range and variability of prediction RMSE 
of LFEMcf tended to be larger than for LMEM. 
This was most pronounced for small subsample 
sizes. In addition, LFEMcf tended to result in larger 
bias than LMEM. This suggests that the LMEM 
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approach is superior to the LFEMcf, especially 
for small subsample sizes of one or two.

Although microclimate sampling and monitor-
ing costs are predominately driven by time and 
expenses associated with travel, the cost of equip-
ment (microclimate sensors) can be decreased by 
only subsampling for relative humidity. If sensors 
that measure both relative humidity and tempera-
ture are four times more expensive than sensors 
that measure temperature only, the equipment 
cost can be cut in half by subsampling relative 
humidity at one third of all the locations for which 
temperature information is recorded.

Our analysis does not support recommendations 
on where to place the subsample of RH sensors. 
However, the sensors should be placed so that 
they capture the full range of RH values within a 
stream reach (e.g., close to stream and on ridge 
top). Deploying air temperature sensors densely 
along fewer transects was found to be more ef-
ficient for modeling purposes than widely spaced 
deployment along a larger number of transects 
(Eskelson et al. 2011). The same may be true for 
RH sensor deployment.

Accuracy and Applicability

The importance of atmospheric humidity to defin-
ing the fundamental niche and activity levels of 
riparian forest organisms, particularly amphibians 
and macroinvertebrates, is well established (e.g., 
Dumas 1956, Feder 1983, Collier and Smith 2000); 
however, critical thresholds of relative humidity 
are lacking. The RMSE of the models developed 
here indicate prediction errors of 3-4% relative 
humidity. This level of precision is likely suit-
able for distinguishing among somewhat broadly 
defined humidity regimes arising from different 
stream reach conditions (e.g., degree of channel 
incision, seasonal presence of surface water, 
stream orientation, geographic location). The 
extent to which estimation precision is relevant 
to detecting relative humidity responses to forest 
management—particularly harvest—will likely be 
strongly dependent on the intensity of perturba-
tion. Overstory removal (clear cutting) has been 
associated with decreased relative humidity of 
10-15% when expressed as a daily average (Chen 

et al. 1993, Brosofske et al. 1997), or as much as 
20-30% when expressed as the summer mean daily 
minimum (Chen et al. 1995, Rykken et al. 2007). 
In contrast to complete overstory removal, partial 
overstory removal (thinning) has been associated 
with relative humidity decreases of typically less 
than 10% and in many cases negligible (Anderson 
et al. 2007, Brooks and Kyker-Snowman 2008). 
When the question becomes one of degree of rela-
tive humidity response with a small incremental 
change in harvest intensity, it is unlikely that the 
prediction error of the presented models will be suf-
ficiently small to accurately predict small changes 
in relative humidity. The minimum effect size for 
accurate detection has yet to be determined and 
will likely vary substantially with site conditions.

Another complexity arises from the inherent 
capabilities (design limitations) of various sensors 
to accurately measure the target environmental 
parameters. The relative humidity sensors com-
monly used in ecological field studies have an 
accuracy of ± 2-3%. In contrast, the sensors 
commonly deployed for temperature measure-
ment have accuracies typically in the range of 
± 0.5 °C. Sensor errors arise from variability in 
the physical responses of sensor components to 
the environment and the inability of a modeled 
calibration function to fully account for this incon-
sistency (Wobker et al. 2010). Thus the modeling 
of relative humidity based on temperature data 
will have an inherent limit of 2-3% resolution due 
to measurement error. This level of measurement 
error is not reflected in the RMSE calculated for 
the fitted models, which assumes that both the 
explanatory and dependent variables are measured 
without error. While model precision of estima-
tion can be improved by increasing the number of 
independent data points, the measurement error 
associated with limitations of the sensor calibration 
function cannot be decreased by simply making 
more measurements or deploying more sensors 
(sensu Gregoire et al. 1995, Wobker et al. 2010). 
The RMSE of the RHmin estimation models fitted 
here suggests their utility for modeling RHmin 
patterns in a general context but perhaps not for 
high resolution individual point estimation. In our 
modeling we used daily averages as integrative 
metrics of relative humidity and air temperature. 
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Assuming that sensor measurement error is unbi-
ased, models developed from integrative metrics 
may be less susceptible to measurement error and 
therefore may have more predictive utility than 
models developed from individual observations, 
but we did not explicitly address this possibil-
ity. The inherent measurement error of relative 
humidity due to sensor design limitations could 
be accounted for in future models by following 
Carroll et al. (2006:239-245).

Although forest managers have substantial 
interest in monitoring temperature responses to 
harvest, particularly in relation to the influences 
of an altered microclimate on critical stream tem-
perature thresholds, there has been substantially 
less interest or experience in monitoring relative 
humidity changes due to management activity. 
Within a holistic ecosystem management para-
digm the recognition that atmospheric humidity 
as well as temperature may have importance in 
defining habitat suitability for some organisms 
or communities, there may be value to defining 
cost-efficient ways to monitor relative humidity 
patterns and dynamics. For example, the assess-
ment of novel silvicultural approaches to restore 
riparian processes and functions might consider 
relative humidity as an element of a broader suite 
of forest structure and microclimate attributes 
to monitor. The modeling approaches presented 
here provide one means for enhancing relative 
humidity effectiveness monitoring predominantly 
in a research context but potentially in adaptive 
management applications as well. 

Future Research

A few stream reaches in the DMS data showed 
some curvature in the relationship between RHmin 
and Tamax. This may be accommodated in the 
models by adding quadratic terms. The slope in 
the relationship between RHmin and Tamax differed 
slightly for some of the DMS stream reaches. 
This could possibly be accounted for by adding 
a random slope in the linear mixed effects model. 
Due to the fairly small data sets used in our study, 
neither the random slope nor the quadratic terms 
were explored any further because they would have 
required the estimation of additional parameters. 

However, these are possible ways to improve the 
presented models in the future as more data become 
available. Future models should also explore the 
inclusion of variables that describe canopy cover 
and shade in more detail, which may allow addi-
tional assessment of management activity impacts 
on relative humidity in riparian areas.

In our study, data measured in a single summer 
were used for the model development. To cut back 
on RHmin monitoring costs, it is mainly of interest 
to make use of RHmin measurements from previous 
years. Based on the results of our study, incorpo-
rating RHmin information from previous years into 
the RHmin models will improve model accuracy.

It may also be beneficial to extend the model-
ing effort beyond the warm, dry summer season, 
which has been the focus of stream-centric water 
temperature and microclimate studies to address 
seasonal variation in the relationships between 
microclimate and distance from stream. Micro-
climate-distance from stream relationships have 
been shown to vary across seasons not only with 
respect to horizontal distance from stream (Han-
nah et al. 2008), but also with respect to vertical 
distance in the canopy (Rambo and North 2008). 
Conceivably, seasonal variation in horizontal and 
vertical gradients could play important roles in 
the structuring of habitats during important life 
history stages for many organisms (McCune 1993, 
Pabst and Spies 1998, Sheridan and Olson 2003) in 
addition to posing complex modeling challenges.

Conclusions

High relative humidity levels in riparian areas are 
paramount for riparian flora and fauna. It is practi-
cally impossible to monitor relative humidity for 
all stream reaches that are potentially impacted by 
forest management activities. We presented relative 
humidity models that may allow a cost-effective 
way of monitoring riparian relative humidity and 
localizing relative humidity information to specific 
stream reaches to inform buffer prescriptions. The 
presented LMEM and LFEMcf models allowed 
predictions of RHmin based on Tamax and other 
covariates by localizing the model for new stream 
reaches with an estimated random stream reach 
effect or stream reach correction factor, respec-
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tively. Based on our results, a minimum of three 
to five RHmin subsamples per stream reach are 
recommended for estimating the random effect or 
correction factor, but substantial improvements in 
model performance can already be achieved with 
a subsample size of one if the variability among 
stream reaches is large. Model improvement was 
greater for the DMS data compared to the Trask, 
which had less variability among stream reaches 
than was observed in the DMS data. Subsampling 
of relative humidity can potentially reduce equip-
ment costs for microclimate monitoring. However, 
it is still uncertain whether the prediction accuracy 
achieved by our presented models is sufficient 
for detecting change in relative humidity caused 
by management activities. Future RHmin models 

could possibly be improved by incorporating 
RHmin measurements from previous years and 
accounting for the response error.
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Appendix

A1. Linear Fixed Effects Model

The linear fixed effects model is specified as:

[1]

where RHmin ij is the mean daily minimum relative 

humidity measured for sensor j in stream reach 

i; Xij are the covariates observed for sensor j in 

stream reach i (i.e., Tamax ij for the Trask and Tamax ij, 

HASij, and DIFNij for DMS);   are parameters 

to be estimated; and εij is an error term, assumed 

to be independent between observations and with  

  where where the parameter δ can take 

any value in the real line. The variance structure 

of  the within-stream reach errors was modeled 

with a power variance function (Pinheiro and 

Bates 2000, p. 210). To predict RH values for 

locations in a new stream reach m the available 

information of the covariates Tamax ij, HAS, and 

DIFN is simply applied to Equation 1:

[2] 

where are the covariates at the new loca-

tions in stream reach m and are the parameter 

estimates from Equation 1.

A2. Linear Fixed Effects Model with 
Correction Factor

The correction factor k*
m for the LFEMcf model 

is calculated as:

[3]

where     and      are the predicted 

and observed RHmin values for the sensor j in the 

new stream reach m. The localized prediction for 

a new location in stream reach m is then:

[4] 

where and   are defined as in Equation 

2 and k*
m is the stream reach correction factor.

A3. Linear Mixed Effects Model

The linear mixed effects model is defined as 

follows:

[5] 

where Xij and  are defined as in Equation 1, 

and       and 
       

are the ran-

dom stream reach effect and residual error term, 

respectively, with Σ being a diagonal matrix with 

elements Tamax 
2
ij . The variance structure of the 

within-stream reach errors was modeled with 

a power variance function (Pinheiro and Bates 

2000, p. 210).

If a subsample nm of RHmin measurements is 

available from a new stream reach m not included 

in the original modeling data set, the subsample 

can be used to localize RHmin predictions for 

that stream reach using the parameter estimates 

obtained by fitting Equation 5:

[6] 

where 
  

 is the estimated random stream reach 

effect for new stream reach m. For a particular 

stream reach for which a subsample of RHmin 

measurements is available 
  

is estimated as

[7]  

where 
  

is a vector of ones with length nm, 
 

  
is a nmxnm matrix of ones, and    and 

      are the observed and predicted RHmin values 

of the subsample in stream reach m.

max ij
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A4. Bias and Root Mean Square Error

Bias and root mean square error (RMSE) for each 
stream reach were calculated as follows:

[8]

[9]

where n is the number of stream reaches, ni is the 
number of deployed microclimate sensors within 
stream reach i, and     and 

    
are the 

predicted and observed RHmin values for the sen-
sor j in stream reach i, respectively. The average 
bias and RMSE of the eight stream reaches was 
reported.


