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Abstract: Small-area estimation (SAE) is a concept that has considerable potential for precise estimation of
forest ecosystem attributes in partitioned forest populations. In this study, several estimators were compared as
SAE techniques for 12 counties in the northern Oregon Coast range. The estimators that were compared
consisted of three indirect estimators, multiple linear regression (MLR), gradient nearest neighbor imputation
(GNN), and most similar neighbor imputation (MSN), and five composite estimators based on MLR, MSN, and
GNN with county-level direct estimates. Forest attributes of interest were density (trees/ha), basal area (m2/ha),
cubic volume (m3/ha), quadratic mean diameter (cm), and average height of 100 largest trees per ha. The sample
consisted of 680 annual Forest Inventory Analysis plots, a spatially balanced sample across all conditions and
ownerships. The auxiliary data consisted of 16 Landsat variables, a land cover classification, tree cover, and
elevation. Overall, the composite estimators were superior when both precision and bias of estimation were
considered. FOR. SCI. 59(5):536–548.
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FOREST MANAGERS AND PRACTITIONERS OFTEN PAR-
TITION large forested populations into smaller areas
of interest for forest management objectives. Large

inventory programs, such as the Forest Inventory Analysis
(FIA) of the US Department of Agriculture, are also inter-
ested in estimating forest attributes for areas smaller than
the state or national level. Typically, this is done by deriving
direct estimators from the plots sampled within the area of
interest. However, it is often difficult to obtain precise direct
estimators of forest attributes within relatively small areas
that may contain few plots.

Small-area estimation (SAE) is a concept that is rela-
tively new to forestry but has considerable potential for
precise estimation of forest ecosystem attributes. Much of
the demand to assess SAE has arisen from the need for
precise and accurate estimators of forest attributes at vary-
ing spatial scales. SAE techniques attempt to obtain estima-
tors in situations in which there is insufficient ground data
to achieve the desired level of precision for direct estimators
(Costa et al. 2003). Through FIA, it is possible to classify
larger areas as populations containing smaller areas of in-
terest (e.g., individual counties or subcounties). Note that
the term “small area” does not necessarily pertain to the
physical size of the area but rather the sample size repre-
senting it.

There are different methods of SAE, the validity of
which greatly depends on the structure and composition of
both the small area and the available auxiliary information
(Best et al. 2007). Traditionally, SAE has been divided into

three categories: direct estimation, indirect estimation, and
composite estimation (Rao 2003, Costa et al. 2003, 2004,
Best et al. 2007). A direct estimator is an estimator that
uses data taken directly from the small area of interest. This
implies that there needs to be a sample taken from all areas
of interest to effectively use direct estimation (Best et al.
2007).

Indirect estimators do not necessarily require that an
adequate sample is taken for each area of interest. They use
auxiliary information both within and outside the study area
to derive a model for the population and then base estima-
tion on this model (Heady et al. 2003, Rao 2003, p. 57, Best
et al. 2007). One common indirect estimator used for SAE
is multiple linear regression (MLR), but other methods such
as nearest neighbor imputation have also been also used in
forestry (Moeur and Stage 1995, Moeur 2000, LeMay and
Temesgen 2005, Hudak et al. 2008). If linear regression is
used, the coefficients of the model are applied to mean or
total values of the auxiliary variables within the small area
of interest (Fuller and Rao 2001, Rao 2003).

A composite estimator is a method that can incorporate
strength from both direct and indirect estimation; it usually
consists of a weighted sum or mean of a direct estimator and
an indirect estimator for the small area of interest. A typical
form of composite estimation for SAE uses a regression-
based indirect estimate and a direct estimate for each small
area of interest (Fuller and Rao 2001). The reason for using
such an estimator is to balance the potential bias of the
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synthetic estimator with the lower precision of the direct
estimator (Slud and Maiti 2006).

One of the main methods of composite estimation is a
unit-level empirical best linear unbiased predictor (EBLUP).
With use of a 1-fold nested error (linear mixed) model,
EBLUP has both an indirect component with fixed effects
and a random effects coefficient. This is accomplished by
splitting the model variance into within-area and between-
area variance (Rao 2003, p. 95–113, Breidenbach and As-
trup 2012). One drawback of obtaining indirect estimates
through standard MLR is that small areas can sometimes
have strong individual effects not indicative of the overall
population. EBLUP attempts to compensate for this defi-
ciency by predicting random effects for the small areas
based on one or more of the auxiliary variables. Unlike an
area-level EBLUP, a unit-level EBLUP allows the auxiliary
variables to be directly linked with the observational units
of the population sample, such as individual plots (Rao
2003, Chapter 5, Goerndt et al. 2011).

A common alternative to regression-based approaches
to SAE is nearest neighbor (NN) imputation. Imputation is
defined as the replacement of missing or nonsampled mea-
surements for a unit with measurements from a unit with
similar characteristics (Van Deusen 1997). NN imputation
methods rely on a measurement of the distance between
units or areas of interest based on auxiliary information
through some form of canonical correlation analysis (Moeur
and Stage 1995, Moeur et al. 1999, Eskelson et al. 2009).
Two prevalent methods of NN imputation for forest attri-
butes are most similar neighbor (MSN) (Moeur and Stage
1995, Moeur 2000, LeMay and Temesgen 2005, Hudak et
al. 2008) and gradient nearest neighbor (GNN) (Ohmann
and Gregory 2002). As with MSN, GNN typically uses only
one neighbor for imputation. The primary difference be-
tween these two methods is that GNN uses a canonical
correspondence analysis (CCA) as opposed to a canonical
correlation analysis to estimate the distance metric.

All forms of SAE that have been described require aux-
iliary data to be directly linked with observational units
(plots) on the ground. For spatially large populations (e.g.,
counties and subregions), it has become increasingly com-
mon to use remote sensed data for the entire population.
One form of remote sensed auxiliary information that has
been shown to be effective for implementing SAE tech-
niques is light detection and ranging (LiDAR) data (Goerndt
et al. 2011). However, LiDAR is limited as to its availability
for large regions. Landsat TM and Landsat ETM� data, on
the other hand, are readily available nationwide and can be
useful for estimating forest attributes (Meng et al. 2007,
2009, Hudak et al. 2008).

The primary goal of this study was to compare selected
SAE methods to obtain precise and accurate county-level
estimates for selected forest attributes within a large region.
The specific objectives were to examine the performance of
three indirect estimation methods (MLR, GNN, and MSN),
examine the performance of composite estimators, includ-
ing EBLUP, using direct estimates and each of the afore-
mentioned indirect estimates, and compare the selected
methods with regard to the estimation of attributes of inter-
est for the individual counties. The variables of interest for

this study are total stem volume (CuVol, m3 ha�1), mean
height of largest (dbh) 100 trees/ha (Ht, m), quadratic mean
diameter (QDBH, cm), basal area (BA, m2 ha�1), and
density (live stems ha�1). Ht was chosen because it is a
common height metric used in the Pacific Northwest.

Methods
Study Area

The population of interest for this study consisted of an
area of approximately 2,250,000 ha in western Oregon. The
main tree species are conifers, including Douglas fir (Pseu-
dotsuga menziesii [Mirb.] Franco), grand fir (Abies grandis
[Dougl. ex D. Don] Lindl.), western hemlock (Tsuga het-
erophylla [Raf.] Sarg.), and western redcedar (Thuja plicata
Donn ex D. Don) as apex species. The primary deciduous
species are bigleaf maple (Acer macrophyllum Pursh) and
red alder (Alnus rubra Bong.). This population was selected
as a collection of 12 counties and subcounties representing
the forested area of the northwestern coastal range of Ore-
gon with the Willamette Valley and the Oregon coast as
eastern and western boundaries, respectively. Of the origi-
nal nine counties that make up this region, Lane, Tillamook,
and Lincoln counties were considerably larger than the
other counties. Therefore, these counties were split into
subcounties based primarily on their relative size and the
boundaries of the smaller adjacent counties. An alternative
method for defining subcounties would have been to divide
them so that each subcounty would have equal FIA sample
sizes. It was decided that the chosen method would be more
realistic with regard to arbitrary features (landscape, water-
ways, and topography) that are typically used to define
county boundaries. A description of the individual subcoun-
ties (counties) and location information for the population
of interest are given in Figure 1.

Field Data

The field data used in this study consisted of annual FIA
plots measured between 2002 and 2008. This sample is the
first seven panels of the FIA annual inventory and thus
constitutes 70% of the full FIA sample for the counties of
interest. The ground data included all forested and nonfor-
ested FIA plots within the region. Note that the 6-year time
span in which the FIA plots were measured could poten-
tially lead to slight bias. However, the bias should be
negligible because the auxiliary data (Landsat) used for this
study were collected in 2006, as described in the next
section. The final FIA data set for the population of interest
consisted of 680 plots. All pertinent tree information for the
FIA plots was obtained from four 7.32-m radius subplots for
trees with dbh between 12.7 and 76.2 cm and four 17.95-m
radius macro-plots for trees with dbh �76.2 cm. A sum-
mary of selected stand attributes by county/subcounty is
given in Table 1. Many attributes have fairly large SDs,
denoting a high degree of within-county variability.

Landsat Data

The Landsat data used for this study was Landsat 5 TM
collected between July 7 and Aug. 1, 2006. From the
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original Landsat data, six of the original bands including
bands 1 through 5 (B1–B5) and band 7 (B7) were extracted.
Geometric rectification and radiometric correction were
conducted by the USDA Forest Service Remote Sensing
Applications Center in 2006. There are several transforma-
tions of Landsat imagery correlated with certain character-
istics of landscape vegetative structure (Wilson and Sader
2002, Healey et al. 2005). One type of Landsat transforma-
tion included in this study was tasseled-cap (TC) transfor-
mation. TC transformation is accomplished through the
combination of all nonthermal TM bands with coefficients
derived from spectral analyses (Crist and Cicone 1984). In
past studies, TM bands used in TC transformation of Land-
sat have been shown to be correlated with forest disturbance
(Olthof et al. 2004, Healey et al. 2005). TC transformations
are designed to optimize the visualization of three important
factors: brightness, greenness, and wetness (Crist and Ci-
cone 1984). These factors are primarily represented by the
first three of six TC variables (TC1–TC6), whereas the
fourth generally represents haze and the fifth and six are
considered “noise” variables. Although the first three TC
variables are considered to be the most important for veg-
etation studies, all six of the TC variables were considered
as possible auxiliary variables in the analysis. The normal-
ized difference vegetation index (NDVI) is a very simple
Landsat band function that can be important in describing

forest health and vigor (Gillespie 2005). More specifically,
NDVI has been shown to be effective in describing factors
such as crown closure, forest density, and tree species
diversity (Feeley et al. 2005). NDVI was calculated using
the following equation

NDVI �
B4 � B3

B4 � B3
(1)

where B3 and B4 are TM bands 3 and 4, respectively.
In addition to those Landsat bands and transformations,

there are several simple band ratios that can be useful for
describing forest characteristics. The band ratios used in this
study were B4/B3 (R1), B5/B4 (R2), and B7/B5 (R3). The
combined purpose of these ratios is to enhance the features
of forest cover, bare soil, and water to better contrast them
on the landscape (Wilson and Sader 2002, Olthof et al.
2004). The spatial resolution of all Landsat bands used in
this study was 30 � 30 m. For each FIA plot, Landsat
values were obtained by taking the average of the nine pixel
values intersecting the plot. Landsat variables values were
obtained for every pixel located within the population.

Other Auxiliary Data

In addition to Landsat variables, several auxiliary vari-
ables were used in the analysis. Cover was derived from the
National Land Coverage Database (NLCD), which classi-
fies individual Landsat pixels into cover types (e.g., conif-
erous forest, deciduous forest, shrub/scrub, wetlands, urban
development, and cultivated fields) (NLCD 2001, Homer et
al. 2007). The Cover variable is an indicator of whether an
area is forested (“1”) or nonforested (“0”). For this study,
pixels classified as “forested” included coniferous forest,
deciduous forest, mixed forest, shrub/scrub, and woody
wetlands. Plot-level values for Cover were calculated as the
cover type of the majority of pixels intersecting each plot.
Another variable included in the analysis and derived from
NLCD was forest canopy percentage (Canopy) (NLCD
2001, Nowak and Greenfield 2010). Canopy values for each
plot were calculated as an average of the pixel values
intersecting each plot. Note that there is some potential for
bias in using the NLCD because it was collected 5 years
before the Landsat data. Any bias issues would most likely
be caused by newly developed areas not indicated on the
NLCD coverage. Elevation (Elev) was derived from digital
elevation models (DEM) obtained from the US Geograph-
ical Survey (US Geographical Survey 2001, Dorren et al.
2003). As with Canopy, Elev for each plot was calculated as
an average of the DEM pixel values intersecting each plot.

Simulation

The primary assumption for SAE is that there is an
insufficient sample size within each small area of interest to
obtain precise direct estimates. The individual counties used
in this study contain anywhere from 33 to 79 FIA plots
(Figure 1). It was necessary to simulate smaller sample sizes
to assess the performance of the estimators as the sample
size increased or decreased and to facilitate validation of the
estimators using direct county estimates of the attributes
from the full samples as a surrogate for census information.

Figure 1. Map of population with county names, areas (ha),
and FIA sample sizes (n).
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Therefore, the simulation of reduced sample sizes was done
by randomly selecting FIA plots from each county using 20,
30, and 40% sampling intensities for 500 iterations. Direct
estimates in the form of county-level means were calculated
for each attribute at all sampling intensities as well as for the
full samples. The estimators were assessed for the three
sampling intensities separately. County-level direct esti-
mates based on the full sample for each attribute were
retained as validation data for each estimator in the absence
of census information.

Statistical Analysis
MLR Models

Unit-level (plot-level) MLR models using the full sample
data were calculated as an initial template (variable list) for
creating both the MLR estimates and the EBLUP models.
The attributes of interest were assessed for transformations
(e.g., log transformation and square root transformation)
using residual plots. Models were selected using a subset
regression technique that identifies the explanatory vari-
ables that create the best-fitting linear regression models
according to the Bayesian information criterion (BIC) using
an exhaustive search. This was performed using the regsub-
sets() tool available in the leaps() package for R() (Lumley
2009, R Development Core Team 2008). The resulting
output contained information for a total of 70 possible
models ranked by BIC. Any model that had a variance
inflation factor score greater than 9.5 was automatically
dropped from the final list (Goerndt et al. 2011). The
variable sets derived from this step were used to calculate
regression coefficients by using both the full sample and
each subsample selected in the simulation. The regression
coefficients estimated by using the full sample and sub-
samples were applied to the county-specific means for all
pixels of the auxiliary variables to calculate the indirect
(synthetic-type) estimates (Rao 2003, p. 46, 79). Whereas
MLR_A was calculated using the full sample, MLR_B was
calculated using 20, 30, and 40% subsamples.

EBLUP Models

The unit-level EBLUP is based on a 1-fold nested error
linear regression model with the following form (Rao 2003,
p. 78)

yij � x�ij � � vi � eij , (2)

where yij is the attribute value for FIA plot j in county i, xij

is a vector of values for selected auxiliary variables for FIA
plot j in county i, � is a vector of regression coefficients, vi

is the area-specific random effect for county i, and eij are
independent and identically distributed random variables
independent of vi.

The 1-fold nested error models were fit using the lme tool
from the nlme package for R (R Development Core Team
2008). The final model for each attribute was chosen by
assessing the BIC value from each possible model and
choosing the model with the lowest BIC. To obtain attribute
EBLUPs for each county, the fixed coefficients and the
random county effect obtained from the respective unit-
level model were used to form an estimate of the following
form (Rao 2003, p. 80)

Y� i � X� �i �̂ � v̂i , (3)

where X� i is a vector of auxiliary values in the form of
overall area-specific means from all Landsat and auxiliary
pixels within county i, � is a vector of regression coeffi-
cients, and vi is the area-specific random effect for county i
calculated as

v̂i �
�̂v

2

�̂e
2 � ni �̂v

2 �
j�1

ni

� yij � x�ij �̂�

�
ni �̂v

2

�̂e
2 � ni �̂v

2 � y� i � X� �i �̂� (4)

where y�i is the mean of yij for county i, �̂e
2 and �̂v

2 are the
estimated variances of e and v, and ni is the number of plots
in the county (Battese et al. 1988, Rao 2003, p. 79, Costa et
al. 2009). This leads to Equation 3 being calculated as

Y� i � X� �i �̂ � v̂i � X� �i �̂ �
ni �̂v

2

�̂e
2 � ni �̂v

2 � y� i � X� �i �̂�

� �1 �
ni �̂v

2

�̂e
2 � ni �̂v

2�X� �i �̂ �
ni �̂v

2

�̂e
2 � ni �̂v

2 y� i , (5)

Equation 5 demonstrates how the nature of vi (Equation 4)
causes EBLUP to actually be a composite estimator derived

Table 1. Selected forest attributes by county.

County No. n Density (trees/ha) BA (m2/ha) CuVol (m3/ha) QDBH (cm) Ht (m)

Benton 1 60 201.3 (204) 23.2 (25.4) 277.2 (357.3) 29.4 (31.1) 20.2 (18.6)
Clatsop 2 76 357.8 (299.8) 24.3 (21.8) 227.1 (254.1) 25.3 (19.5) 17.8 (12.7)
Columbia 3 59 262.4 (267.7) 16.6 (18.9) 157.7 (222.2) 18.7 (17.7) 14.7 (14.1)
Lane_A 4 42 298.3 (185.7) 37.4 (26.6) 437.4 (379.3) 48.1 (30.7) 30.2 (16.7)
Lane_B 5 79 214.7 (236.7) 18.1 (20.1) 198.1 (248.1) 23.8 (24) 17.9 (16.6)
Lincoln_A 6 33 330.0 (341) 21.6 (19.4) 201.3 (216.5) 28.1 (26.1) 18.2 (13.8)
Lincoln_B 7 45 331.3 (259.5) 30.9 (24.6) 351.4 (372.5) 37.5 (29.7) 25.2 (18.3)
Polk 8 64 183.7 (277.4) 13.8 (20.6) 145.3 (262.5) 18.0 (25.1) 12.2 (15.6)
Tillamook_A 9 55 348.4 (268) 30.6 (18.9) 311.1 (217.8) 32.7 (17.1) 24.8 (12.4)
Tillamook_B 10 40 266.6 (261.4) 26.9 (20.8) 301.2 (280.2) 40.1 (30.3) 25.1 (16.1)
Washington 11 66 192.6 (246.1) 17.4 (20.8) 181.0 (231.9) 19.9 (22.8) 15.1 (16.2)
Yamhill 12 61 158.0 (234.1) 16.6 (21.6) 195.2 (290.9) 27.6 (31.9) 17.1 (18.7)

Data are means (SD); n � 680.
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from a direct component (y�i) and indirect component (X�i�).
Note that setting vi � 0 and use of the subsampled data
results in the calculation of MLR_B (Rao 2003, pg. 78).

The primary purpose of using EBLUP as opposed to
MLR for deriving county-level estimates is to capitalize on
the between-county variation in the data to improve estima-
tion. Although Landsat data can be fairly informative re-
garding some forest attributes such as density and BA, it is
suspected that other attributes such as QDBH and Ht will
contain variation that cannot be explained by the Landsat
auxiliary data. However, EBLUP may adjust for some of
this variation by accounting for strong individual effects
that may exist in the counties themselves (e.g., variation in
forest attributes between counties not explained by explan-
atory variables).

Imputation (MSN and GNN)

Both MSN and GNN imputation were assessed as alter-
natives to MLR indirect estimation of forest attributes,
because imputation methods are widely used in forestry
(Moeur and Stage 1995, Moeur 2000, Ohmann and Gregory
2002, LeMay and Temesgen 2005). Rather than use stan-
dard MSN imputation, we used a “modified” MSN, which
imputes values to the unit (pixel) level rather than to the
county level. This allowed for a more direct comparison
between the performance of MSN and GNN. The distance
metric used for MSN imputation had the following form
(Moeur and Stage 1995, Temesgen et al. 2003, LeMay and
Temesgen 2005)

dij
2 � �Xi � Xj���	2���Xi � Xj�, (6)

where Xi is the vector of auxiliary variables for the ith plot,
Xj is the vector of auxiliary variables for the jth reference
plot, � is a matrix of standardized canonical coefficients for
the X variables, and 	2 is a diagonal matrix of squared
canonical correlations. For GNN, the weights (�	2��) were
assigned by using a projected ordination of the auxiliary
data based on CCA (Ohmann and Gregory 2002, Eskelson
et al. 2009). The set of X variables for this analysis consisted
of a matrix of the Landsat-derived auxiliary variables (Table
2), whereas the set of Y variables was a matrix of values for
all five attributes of interest. The canonical correlations are
created using both the X and Y variables.

All calculations for MSN and GNN were performed
using the yaImpute() tool for R() (Crookston and Finley
2007, R Development Core Team 2008). MSN and GNN

estimates were obtained by imputing values to all pixels
within each county using only FIA plots located in forested
areas as defined by NLCD. Similar to Ohmann and Gregory
(2002), attribute values for nonforested pixels were set to 0
by masking nonforested land using NLCD forested and
nonforested classifications described earlier (e.g., conifer-
ous forest, shrub/scrub, and woody wetland). This makes
the classification of NLCD an integral part of the estimates
derived from MSN and GNN. The final MSN and GNN
estimates were obtained by calculating the county-level
mean of all pixel-based (forested and nonforested) attribute
values (Ohmann and Gregory 2002). Because of the exor-
bitant amount of time and computing resources that would
be needed to impute values to more than 20,000,000 pixels
over 500 iterations, MSN and GNN were applied using only
the full sample.

Composite Estimators

In addition to EBLUP, four other composite estimators
were analyzed in this study. For every sampling intensity,
each composite estimator was calculated using the reduced
sample direct estimate and one of the aforementioned indi-
rect estimates for each county. Individually, the composite
estimators (CE) will be referred to hereafter as MLR_
CE_A, MLR_CE_B, MSN_CE, and GNN_CE based on the
indirect estimation components MLR_B, MSN, and GNN,
respectively. The composite estimators for each variable of in-
terest were developed using Equation 7 (Rao, 2003, p. 57)

ŶiCP � �i Ŷi2 � �1 � �i�Ŷi1, (7)

where ŶiCP is the composite estimate of the attribute for the
ith county, Ŷi1 is the direct estimate of the attribute for the
ith county, Ŷi2 is the indirect estimate of the ith county, and
�i is the weight calculated for the ith county. The weights for
MLR_CE_B, MSN_CE, and GNN_CE were calculated using
a variation of a method described by Costa et al. (2003, 2009)

�̂i �
	̂i

	̂i � �Ŷi2 � Ŷi1�
2 , (8)

with

	̂i �
Vc

ni
, (9)

and

Ve �

�
i

m

ai si
2

�
i

m

ai

, (10)

where ai is the total area (ha) in county i, si
2 is the sample

variance for county i, Ve is the weighted sample variance for
county i, and ni is the ground sample size for county i. Note
that 
̂i is a form of “smoothed” variance that provides
stability to the weights. Although sample variance can be
used, it is considered to be somewhat unstable and can
sometimes be severely inflated compared with (Ŷi2 � Ŷi1)2

(Costa et al. 2003). To assess the difference in precision and

Table 2. Landsat and auxiliary variables used in all imputa-
tions.

Description Specific variables

Original Landsat bands B1
B2
B7

Landsat ratios and functions R1–R3
NDVI

Landsat transformations (TC) TC1–TC6
Auxiliary variables Cover

Canopy
Elevation
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bias, MLR_CE_A was estimated using si
2 in place of Ve to

derive the weights. In so doing, MLR_CE_A uses a weight-
ing strategy very similar to that used by Costa et al. (2009).
The weighting method shown in Equation 8 differs slightly
from the one presented by Costa et al. (2003) in that it uses
the individual county-level difference between the indirect
estimate and direct estimate instead of a mean difference
across all counties. Although slightly less stable, this form
of weighting should make the composite estimators more
versatile with regard to weights. The weighting strategy
described in Equation 8 shows that the greater (Ŷi2 � Ŷi1)2

is relative to 
̂i, the greater the influence the direct estimate
will have on the final estimate. The ultimate purpose of
calculating composite estimates is to balance the potential
bias of an indirect estimator against the instability of a direct
estimator (Rao 2003, p. 57). This is an important aspect to
consider when indirect estimators for forest attributes based
on Landsat auxiliary information are used.

The MLR_A, MSN, and GNN indirect estimates (Ŷi1 in
Equation 7) were all calculated using the full sample from
the population instead of the subsample. The purpose of
MLR_A was to calculate a regression-based full sample
counterpart estimate for direct comparison with MSN and
GNN, which could not be calculated using subsamples. The
implication is that the full sample estimates will most likely
perform consistently better than the subsample-based esti-
mates simply because they use more information. However,
the composite estimates for MLR_A, MSN, and GNN were
calculated using the subsamples for the direct estimator
component. In this way, the comparison between the esti-
mators extends to situations in which individual county
samples are assumed to be inadequate regardless of whether
the indirect component is estimated with either the full
sample or a subsample.

Validation

County-level full sample direct estimates were used for
validation at the county level for each estimator. To com-
pare the estimators for each sampling intensity, perfor-
mance statistics were calculated based on the full set of
plots from each county, including relative root mean
squared error (RRMSE) and relative bias (RB). Because
most of the estimators were evaluated over 500 subsamples,
the performance statistics needed to be calculated accord-
ingly. Overall performance was assessed using RRMSE
(Rao 2003, p. 62, Datta et al. 2005)

RRMSE �
1

m �
i

m

�RMSEi /ŶiO�, (11)

with

RMSEi � �1

R �
r�1

R

�ŶiP � ŶiO�2, (12)

where RMSEi is the root mean squared error for county i, m
is the number of counties, R is the number of subsamples
(iterations), ŶiP is the predicted value for county i, and ŶiO

is the full sample direct estimate for county i. Similarly,
overall bias was assessed using relative bias calculated as

RB �
1

m �
i�1

m

�RBi�, (13)

with

RBi �
1

R �
r�1

R �ŶiP � ŶiO

ŶiO
�, (14)

where RBi is the relative bias squared error for county i.
Because MLR_A, MSN, and GNN were not based on
subsampling, the same statistics were calculated based on
the single estimate for each county. This was necessary to
properly compare the performance of these estimators with
the estimators that were dependent on subsampling.

Results and Discussion

The final MLR models were fairly consistent in that they
all included Canopy as a significant predictor variable. Most
of the MLR models also included R3 and Elev as significant
variables. Table 3 shows regression coefficients and sum-
mary statistics for the MLR_A models calculated from the
full sample, as well as lists of auxiliary variables chosen in
the preliminary MLR assessment of the attributes.

The residual plots indicated that transformations were
not needed. The same variables were identified as signifi-
cant in the models for both CuVol and Ht with the exception
of TC4 and Cover. TC4 and TC5 are generally considered
to be less useful for most applications than TC1–TC3. Table
3 shows that variables such as TC4 and TC5 can be signif-
icant in estimating several forest attributes after the effects
of other important Landsat variables are accounted for.
Similarly, the auxiliary variables of Canopy and Elev were
significant for most attributes. As stated previously, the sets
of variables identified in Table 3 were used to evaluate
MLR_B, EBLUP, and the composite estimators using an
MLR_B component.

Because there were five different forest attributes in-
cluded in the canonical correlation for MSN and GNN, five
canonical covariates (axes) were created for determining
distance. The analysis for each method indicated that three
of the axes were highly significant. BA, QDBH, and Ht had
the highest canonical correlations with the auxiliary data,
whereas Density and CuVol had the lowest. Performance
statistics for each county-level attribute by estimation
method and sampling intensity are given for imputation-
based estimators and regression-based estimators in Tables
4 and 5 respectively.

Indirect Estimation
Full Sample Estimates

One of the first noticeable characteristics is the differ-
ence in performance of GNN and MSN compared with that
of MLR_A (Tables 4 and 5). With the exception of density,
GNN and MSN yielded lower RRMSE values than
MLR_A. However, MLR_A consistently had lower bias
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than MSN and GNN. In addition, with the exception of
density, GNN tended to have higher values than MSN for
both RRMSE and RB. Both GNN and MSN have a strong
tendency for underestimation compared with MLR_A, al-
though RB tends to be negative in most cases for MLR_A
as well. There are several possible reasons for the greater
bias of GNN compared with that for MSN and MLR_A. We
classified forest areas as having one of several NLCD land
cover classes including coniferous forest, deciduous forest,
mixed forest, shrub/scrub, and woody wetlands. Cases of

areas actually containing some trees being classified as
nonforest either by the land cover classes we chose or by
error in the NLCD coverage are entirely possible and would
contribute to underestimation in both GNN and MSN
(Smith et al. 2003). However, when MSN and GNN are
calculated without using a mask for nonforested areas, the
RRMSE and RB values are much greater than those shown
in Table 5, especially for GNN. There have also been other
documented cases for which GNN had considerably higher
bias than MSN, such as those described by Eskelson et al.

Table 3. Regression coefficients for MLR_A models using the full sample.

Coefficient Density (trees/ha) BA (m2/ha) CuVol (m3/ha) QDBH (cm) Ht (m)

Intercept �1182.8 (110.1) �0.018 (0.18) �719.4 (131.9) �61.1 (13.9) �0.46 (7.4)
B4 �0.15 (0.02) �0.01 (0.002) �0.006 (0.0008)
R3 1.2 (0.12) 9.9 (0.98) 0.59 (0.1) 0.41 (0.053)
TC2 �0.02 (0.002)
TC4 �0.8 (0.11) �0.5 (0.009) �0.2 (0.12)
Cover �0.8 (3.3) 1.8 (1.7)
Canopy 1.8 (0.24) 0.22 (0.021) 2.4 (0.31) 0.15 (0.04) 0.13 (0.019)
Elev 0.0043 (0.002) 0.05 (0.02) 0.0029 (0.0008)
R2(adj) % 43 54 44 37 55
RMSE 200.6 15.3 216.3 21.1 11.1

SEs of coefficients are given in parentheses.

Table 4. Estimated RRMSE and RB of all regression-based estimates and DE for each attribute of interest by sampling intensity.

20% 30% 40%

RRMSE RB RRMSE RB RRMSE RB

Density (trees/ha)
MLR_A* 8.9 0.48 8.9 0.48 8.9 0.48
MLR_B 11.4 0.48 10.6 �0.11 10.2 0.36
EBLUP 12.1 0.13 10.6 �0.45 10.1 0.03
MLR_CE_A 11.7 �0.48 10.2 �0.53 9.8 0.11
MLR_CE_B 15.6 0.28 12.3 �0.41 10.4 0.04
DE 26.8 �0.05 20.6 �0.6 16.7 �0.3

BA (m2/ha)
MLR_A* 15.7 �3.9 15.7 �3.9 15.7 �3.9
MLR_B 16.9 �3.6 16.4 �4.1 16.3 �3.9
EBLUP 16.7 �3.9 15.5 �4.4 15.1 �4.3
MLR_CE_A 16.1 �4.1 15.4 �4.2 15.2 �3.9
MLR_CE_B 17.9 �2.3 14.7 �2.4 12.8 �2.2
DE 26.3 �0.4 19.9 �0.2 16.4 �0.2

CuVol (m3/ha)
MLR_A* 18.4 �3.2 18.4 �3.2 18.4 �3.2
MLR_B 21.1 �3.1 19.9 �3.3 19.6 �3.2
EBLUP 20.2 �3.8 18.1 �4.3 16.8 �4.3
MLR_CE_A 20.4 �5.1 18.8 �4.3 18.3 �3.8
MLR_CE_B 21.8 �2.2 17.8 �2.1 15.5 �2
DE 31.4 �0.4 23.9 �0.08 19.5 �0.2

QDBH (cm)
MLR_A* 18.1 �1.3 18.1 �1.3 18.1 �1.3
MLR_B 19.9 �0.52 19 �1.1 18.8 �1.2
EBLUP 17.5 �1.3 15.1 �2.1 13.4 �2.3
MLR_CE_A 18.2 �1.9 17.8 �2.1 17.1 �1.9
MLR_CE_B 18.4 �0.72 14.9 �1.1 12.9 �1.1
DE 24.6 0.2 18.7 0.08 15.3 �0.08

Ht (m)
MLR_A* 14.1 �3.2 14.1 �3.2 14.1 �3.2
MLR_B 15.4 �2.9 14.8 �3.2 14.7 �3.3
EBLUP 14.1 �3.2 12.5 �3.6 11.5 �3.7
MLR_CE_A 14.3 �2.8 13.7 �3.1 13.7 �3.2
MLR_CE_B 15.4 �1.7 12.6 �1.8 11.1 �1.8
DE 22.2 �0.04 16.9 0.05 13.8 �0.2

* No subsampling.
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(2009) in which for some attributes GNN had RB 5 times
greater than that of MSN, a magnitude of difference not
experienced in this study. The indirect estimators usually
achieved greater precision than the direct estimates for low
sampling intensities, albeit the former are based on a much
larger sample size.

Subsample Estimates

The one indirect estimate derived entirely from the sub-
samples was MLR_B. As expected, MLR_B tended to have
a slightly higher RRMSE than MLR_A, particularly at low
sampling intensities (Table 4). Interestingly, this was often
not the case for RB, which for many attributes and sampling
intensities was “slightly” lower for MLR_B than MLR_A.
This may have been caused by the relatively high proportion
of zero observations in the data from nonforested plots, the
truncating effects of which were probably negligible for
many subsamples, depending on which plots were randomly
chosen. Most significant is the performance of the indirect
estimator compared with the direct estimates. For the 20%
sampling intensity, the RRMSE of the model-based, indirect
estimator was substantially better than that of the direct
estimator. However, as the sample size increased, the per-
formance of the direct estimator improved relative to that
of the indirect estimator, especially for QDBH and Ht. The
direct estimator is design-unbiased, and, therefore, the rel-

ative bias was negligible and always smaller than that of all
other estimators.

Composite Estimation

In contrast to the other subsample-dependent composite
estimators, EBLUP has the greatest tendency to mimic the
performance of MLR_B for most attributes and most sam-
pling intensities. In this study, EBLUP was very similar to
MLR_B in terms of RRMSE and RB in many cases (Table
4). This result is due to extremely small values of the
estimated random effects (e.g., vi � 0.00001 � 0.22) that
were most likely caused by a disparity between within-
county variation and between-county variation. EBLUP is
highly dependent on the between-area variation, which de-
scribes differences in the attribute of interest that indepen-
dent variables cannot explain. According to Equation 4,
small random effects can be caused by small values of �v

2,
relative to �e

2, reflecting a disproportionately large within-
county variation compared with the between-county varia-
tion. This can have the effect of creating a very small ratio
(weight) 
 � �v

2/�e
2, where �v

2/�e
2 � ni�v

2 � 
/(1 � ni
).
Based on the full sample, �e

2 was between 4 times (QDBH)
and 100 times (density) �v

2. Therefore, the weight assigned
to the direct estimator in Equation 5 was always lower than
0.25 and was typically much lower when subsamples due to
higher values for �e

2 were used.

Table 5. Estimated RRMSE and RB of all imputation-based estimates and DE for each attribute of interest by sampling intensity.

20% 30% 40%

RRMSE RB RRMSE RB RRMSE RB

Density (trees/ha)
MSN* 13.4 �13.2 13.4 �13.2 13.4 �13.2
GNN* 7.2 �4.8 7.2 �4.8 7.2 �4.8
MSN_CE 16.3 �6.1 13.4 �6.3 11.6 �6
GNN_CE 14.3 �2.3 11.2 �2.6 9.3 �2.5
DE 26.8 �0.05 20.6 �0.6 16.7 �0.3

BA (m2/ha)
MSN* 12.8 �10.1 12.8 �10.1 12.8 �10.1
GNN* 14.8 �13.7 14.8 �13.7 14.8 �13.7
MSN_CE 16.6 �4.8 13.6 �4.7 11.7 �4.4
GNN_CE 17.6 �6.1 14.4 �5.8 12.6 �5.4
DE 26.3 �0.4 19.9 �0.2 16.4 �0.2

CuVol (m3/ha)
MSN* 14.6 �6.7 14.6 �6.7 14.6 �6.7
GNN* 17.8 �16.5 17.8 �16.5 17.8 �16.5
MSN_CE 19.1 �3.4 15.5 �3.3 13.4 �3.3
GNN_CE 21.2 �7.2 17.4 �6.7 15.2 �6.2
DE 31.4 �0.4 23.9 �0.08 19.5 �0.2

QDBH (cm)
MSN* 13.7 �4.4 13.7 �4.4 13.7 �4.4
GNN* 15 �7.2 15 �7.2 15 �7.2
MSN_CE 16.1 �2.1 13.1 �2.2 11.4 �2.1
GNN_CE 16.8 �3.1 13.7 �3.1 11.9 �2.9
DE 24.6 0.2 18.7 0.08 15.3 �0.08

Ht (m)
MSN* 11.7 �7.2 11.7 �7.2 11.7 �7.2
GNN* 13.2 �12.4 13.2 �12.4 13.2 �12.4
MSN_CE 13.7 �3.4 11.4 �3.4 9.9 �3.4
GNN_CE 15.2 �5.3 12.5 �5.1 10.9 �4.8
DE 22.2 �0.04 16.9 0.05 13.8 �0.2

* No subsampling.
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In terms of precision, the composite estimators generally
mirrored the performance of their respective indirect esti-
mation components; this was more evident for MLR_CE_A
than for MLR_CE_B. Much of the difference in precision
observed between MLR and MSN dissipated greatly with
the calculation of composite estimates. Composite estima-
tion did not produce greater precision than indirect estima-
tion for MSN in most cases, but substantially decreased
the relative bias. This was a contrast to MLR_CE_A and
MLR_CE_B, which achieved greater precision than did
MLR_B in many cases, particularly at sampling intensities
greater than 20%. This effect may be due to the fact that
MSN was estimated with the entire sample, whereas both
the DE component of MSN_CE and the MLR-based esti-
mates were computed with a fraction of the sample. One
key observation is that there is a difference in performance
between MLR_CE_A and MLR_CE_B, particularly for
precision. MLR_CE_B has a tendency to outperform
MLR_CE_A in terms of precision for higher sampling
intensities but often not for low sampling intensities. This
difference in performance is primarily the result of funda-
mental differences between the weighting strategies of the
two composite estimators and will be addressed more thor-
oughly later.

County-Level Estimation

Although the statistics shown in Tables 4 and 5 are
informative as to the overall performance of the estimators,
the main objective of SAE is to produce estimates for
individual counties. The county-level RRMSE and RB for
the best subsampled estimators (Tables 4 and 5), including
MLR_B, MLR_CP_A, and MLR_CP_B, and direct estima-
tion were compared for a sampling intensity that showed
a great difference between the estimators (20%) (Figures 2
and 3). For each figure, the counties were sorted in an
ascending sequence based on the mean absolute deviation
of MLR_B from the full sample direct estimates for each
attribute of interest.

Precision (RRMSE)

As seen in the summary statistics in Table 4, it is difficult
to pinpoint any single estimator that is superior in terms of
precision for all attributes in all counties. However, there
are some very distinct trends that can be observed in Figure
2. First, it is apparent that in precision, DE is generally
inferior to all model-based estimators in most cases, partic-
ularly for Density, but it is not appreciably worse for
QDBH. One possible explanation for this is the poorer
model performance of QDBH shown in Table 3, based on
adjusted R2. MLR_B is consistently the most precise esti-
mator for counties with low absolute deviation, but this
quickly changes at mid-range to high deviation. In addi-
tion, EBLUP, MLR_CE_A, and MLR_CE_B tend to more
closely mimic MLR_B for counties with low deviation,
usually in the same general order, because a lower absolute
deviation of MLR leads to a higher weight on the indirect
component of composite estimators.

MLR_CE_B does not follow the pattern of MLR_B

nearly as much as do EBLUP and MLR_CE_A. More
specifically, MLR_CE_B tends to be more stable with re-
gard to precision and actually uses DE more heavily than
MLR_CE_A. This difference is a result of the use of the
smoothed variance estimator (Equation 9) for deriving the
weights of MLR_CE_B. Because the variance component
of the weighting method is itself a weighted mean,
MLR_CE_B tends to weight the direct estimation compo-
nent much more heavily than does MLR_CE_A. As a result,
RRMSE varies less from county to county for MLR_CE_B
than it does for any of the other composite estimators. This
inherent stability, which was the primary reason to use a
smoothed variance, has an even greater effect on RB, as will
be discussed shortly.

Although the county-level values of RRMSE do not
identify one particular estimator as superior to the others,
use of a composite estimator has an apparent advantage in
terms of precision. With the exception of counties with very
low absolute deviation of MLR_B, the composite estimators
tend to have the highest deviation, particularly MLR_CE_B.
RRMSE demonstrates the benefits of using either indirect
estimation or composite prediction over direct estimation;
one of the most important comparisons between the differ-
ent indirect and composite methods is bias. This is also
important when imputation is considered as an SAE method
because MSN and GNN were shown to have substantially
higher RB (Table 5) than all estimators illustrated in Figure
1 even though the full sample was used to calculate MSN
and GNN.

Bias (RB)

Note that DE was not included in the comparison of bias
because direct estimation is design unbiased. The overall
differences in RB for these estimators are more intuitive
than are the differences for RRMSE. As expected, the
composite prediction outperformed indirect estimation for
almost all counties and attributes, because the primary pur-
pose of composite prediction is to balance the inherent bias
of an indirect estimator with the low precision of a direct
estimator. By far, the most stable estimator for bias was
MLR_CE_B for all counties and all attributes. This stabil-
ity, caused by a tendency for MLR_CE_B to weight the
direct estimation component more heavily, was also the
primary reason that this estimator was consistently superior
in terms of bias.

Best Estimator

Although the summary statistics and graphs have shown
that both indirect estimation and composite prediction can
produce relatively precise and low biased estimates, the
question of which estimator is the best remains. It is clear
from Figure 3 that MLR_CE_B is superior to all other
methods with regard to bias. However, one has to consider
both precision and bias when choosing an SAE method. The
determination of which estimator is best based on precision
is far less intuitive than that for bias. This was most likely
caused by two factors: poor overall performance of regres-
sion models and homogeneity between counties for some
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Figure 2. Plots of RRMSE% at 20% sampling intensity MLR_B, EBLUP, MLR_CE_A, MLR_CE_B, and DE
for (A) trees/ha, (B) BA, (C) CuVol, (D) QDBH, and (E) Ht. The horizontal axis shows county number (Table 1),
and the right axis represents mean absolute deviation of MLR_B from the full sample mean.
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Figure 3. Plots of RB% at 20% sampling intensity MLR_B, EBLUP, MLR_CE_A, and MLR_CE_B for
(A) trees/ha, (B) BA, (C) CuVol, (D) QDBH, and (E) Ht. The horizontal axis shows county number (Table 1), and
the right axis represents mean absolute deviation of MLR_B from the full sample mean.
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forest attributes. The fact that the overall performance of the
regression models was relatively low (Table 3) is the most
likely reason and was primarily caused by the fact that
Landsat metrics are not as highly correlated with many
forest attributes as are some more advanced forms of re-
mote-sensed data such as LiDAR (Goerndt et al. 2011). This
is particularly important when the precision of estimation is
considered, because the higher precision of most composite
prediction methods compared with that of direct estimation
is a result of the indirect (model-based) component. Relative
homogeneity between counties was observed for most of the
attributes used in this study, especially for Density and Ht
(Table 1), which had an adverse effect on the estimation of
random effects for EBLUP.

Based on the results of the analysis, MLR_CE_A and
MLR_CE_B are superior estimators in terms of precision.
Even on a county-level basis, MLR_CE_B is superior to all
other estimators examined in this study with regard to bias.
Any of the aforementioned composite estimators has the
demonstrated capability to derive estimates of forest attri-
butes with relatively high precision and low bias.
MLR_CE_B could probably be considered the best overall
estimator examined in this study, although it does not al-
ways obtain higher precision than some of the other
estimators.

Conclusion

SAE can provide precise and accurate estimates of forest
attributes for areas of interest within populations of varying
spatial scales. The large-scale availability of modern re-
motely sensed auxiliary information such as Landsat,
NLCD, and DEMs is the key to accomplishing the goal of
applying effective SAE techniques to forestry problems.
The SAE techniques examined in this study have provided
considerable evidence that indirect and composite estima-
tors based on auxiliary information from a regional popu-
lation can provide precise estimates of many forest attri-
butes at the county level. It was also found that the success
of SAE for county-level forest attributes was greatly depen-
dent on the use of composite estimations that could account
for strong individual effects within the counties where they
exist.

This study showed that the model-based indirect estima-
tors and composite estimators were all sufficient for obtain-
ing county-level estimates that had relatively low bias and
were more precise than direct estimates. This result led to
composite estimators that had high precision and low bias
compared with those of direct estimation. EBLUP, MLR_
CE_A, MLR_CE_B, and MLR_B all yielded more precise
estimates with fairly low bias for all attributes than did
direct estimation. However, MLR_CE_B was consistently
the best composite estimator with regard to bias. Composite
methods obtained lower bias for all attributes in most coun-
ties than did indirect estimation. Unlike the regression-
based estimators, GNN and MSN both had a tendency for
consistent underestimation for each county, with substan-
tially greater RB overall.

The estimators used in this study were developed based
on two general situations: there is a sufficient sample size

for the population as a whole, and there is an insufficient
sample size for all counties of interest. For full sample
estimates, the results showed that MLR_A was superior to
GNN and MSN in terms of bias but not in terms of preci-
sion, indicating a distinct tradeoff between use of regres-
sion-based or imputation-based indirect estimators. How-
ever, most disparity in bias between the imputation
estimators and MLR_A was adjusted for in the creation of
GNN_CE and MSN_CE, while still maintaining higher
precision than that of MLR_A for most attributes. In addi-
tion, all three indirect estimators using the full sample
consistently had higher precision than DE in most cases. It
was also shown that the MLR_CE_B performed better than
its indirect component (MLR_B) in precision and bias for
most sampling intensities. This result indicates that use of
the modeling techniques in this study in conjunction with
Landsat auxiliary information can produce relatively precise
and low-bias composite estimators that are well suited to
both situations. The analyses also showed that composite
estimators based on regression generally performed better
than composite estimators based on imputation, especially
for bias. This study has shown that SAE is fairly successful
in estimating several county-level forest attributes with high
precision and relatively low bias.
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