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Edge-Tree Correction for Predicting Forest Inventory
Attributes Using Area-Based Approach With
Airborne Laser Scanning

Petteri Packalen, Jacob L. Strunk, Juho A, Pitkéinen, Hailemariam Temesgen, and Matti Maltamo

Abstract—We describe a novel method to improve the cor-
respondence hetween field and airborne laser scanning (ALS)
measurements in an area-based approach (ABA) forest inventory
framework. An established practice in forest inventory is that trees
with boles falling within a fixed border field measurenent plot
are considered “in”’ trees; yet their crowns may extend beyond the
plot berder. Likewise, a tree bole may fall outside of a plot, but its
crown may extend into a plot. Typical ABA appreaches do not rec-
ognize these discrepancies between the ALS data extracted for a
given plot and the corresponding field measurements. In the pro-
posed solution, enhanced ABA (EABA), predicted tree positions,
and crown shapes are used to adjust plot and grid cell bound-
aries and how ALS metrics are computed. The idea is to append
crowns of “in” trees to a plot and cut down “out” trees, thent EABA
continues in the tradifional fashion as ABA. The EABA method
requires higher density ALS data than ABA because improve-
ment is obtained by means of detecting individual trees. When
compared to typical ABA, the proposed EABA method decreased
the error rate (RMSE) of stem volume prediction from 23.16%
to 19.11% with 127 m? plots and from 19.08% to 16.95% with
254 m? plots. The greatest improvements were obtained for plots
with the largest residuals,

Index Terms—Forestry, remote sensing.

I. INTRODUCTION

ISCRETE-RETURN lidar data acquired by small foot-

print airbome laser scanning (ALS} have increased in
its popularity for forest inventories [1}. Research has focused
on two approaches to predict forest attributes with ALS: indi-
vidual tree crown delineation (ITD) and area-based approach
{ABA) methods. As the names imply, these methods operate at
different scales, In TTD, the idea is to first delineate individ-
ual tree crowns and then to predict tree level attributes. Many
afgorithms have been proposed to delineate individual trees (see
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reviews by Vauhkonen ef al. [2] and Kaartinen ef al. {3]). Most
algorithms use canopy height models (CHM) in which pixel
values correspond to height at above ground level. Trees are
assumed to be peaks in the CHMs and tree crowns are delin-
eated by segmentation. Since ITD applications typically link
field-measured tree atiributes to ALS data, they require accurate
tree level positioning. Many ITD research articles address tree
height only, but in real world inventories other tree attributes
are needed too. Takahashi et al. [4], for instance, predicted stem
volume and Vauhkonen et al. [5] simultaneously impated free
species, diameter, height, and volume.

In ABA, plot-level ALS metrics are related to plot-level field
data. Plot-level field data are obtained by measuring individ-
ual trees from sample plots and summing (or in some cases,
averaging) trees’ values for each plot. Plot-level ALS met-
rics are statistics calculated for the ALS point heights above
the predicted ground surface elevations. Most ALS metrics are
statistics which reflect either height or density information.
Common ALS metrics are, e.g., height percentiles (height) and
the proportion of echoes above 2 m {density). Normally, metrics
are computed by echo categories although “only” and “first of
many” echoes contain most relevant height and density infor-
mation, Plot attributes can be estimated one by one, e.g,, using
regression models [6], or all the attributes can be estimated at
once, e.g., using nearest neighbor imputation [7]. ABA always
requires accurate positioning of sample plots.

In both ITD and ABA, predictions are made wall-to-wall
across the forest, but there are fundamental differences in the
approaches. In ITD, the inventory is performed on a tree-
object basis, and the result is a map of predicted tree locations
with corresponding aitribute predictions. Attributes from tree-
objects are then aggrepated to the desired spatial units, com-
monly stands. In ABA, predictions are performed for a grid
where the cell area approximately corresponds fo the sample
plot area. As with ITD, ABA predictions are typically aggre-
gated to larger units of area such as forest stands. Thus, in
ABA the purpose is not to predict individual tree atiributes, but
to extract ALS points for trees within appropriate areal units
{sample plots or grid cells) and uvse them to infer areal forest
attributes {e.g., stem volume ha“l).

An established practice in forest inventory is to designate a
tree as falling within a sample plot if the center of the bole is
inside the plot bounds [8]. The same approach is used with ABA
to select ALS points for a plot or grid cell—points are desig-
nated as falling within a plot or grid cell if their coordinates
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TABLE 1
MEAN, MINIMUM, AND MAXIMUM OF PLOT ATTRIBUTES BY PLOT SIZE

Plot size 127 nd®

Plot size 254 m°

Mean Min Max Mean Min Max
BWD (cm) 200 12 339 21.7 12.3 325
HDOM (m) 19.74 9.9 33.4 20.2 T8 33.6
Stem number (n ha“} 1305 392 2981 1314 393 3262
Volume (n’ ha™) 2232 720 4866 226.1 69.5 5356

BWD, basal area-weighted mean diameter; HDOM, dominant height.

fall within the plot or grid cell. However, this approach to
selecting ALS points results in edge tree discrepancies with
ABA because some of the crown from “out” trees extend into
the plot ALS data {type 1 discrepancy), and crown from “in”
trees extend outside of the plot ALS data (type 2 discrepancy).
Both types of discrepancies decrease the observed relationship
between ALS metrics and plot attributes. The magnitude of
the errors is affected by plot size, as the proportion of near
plot-edge trees increases on average as plot size decreases.
Nelson ef al, {9] showed that estimates of biomass and volume
were affected by the type 1 discrepancies. The authors used
thin 5 m wide sample plots, which resuited in a high relative
edge to area ratio. Recently, Neesset ef al. [10] also pointed out
the issue with type 1 discrepancies when estimating change in
forest biomass from multitemporal ALS datasets.

To the best of our knowledge, Mascaro ef al. {11] is the only
article where the edge-tree discrepancy has been addressed.
They addressed the discrepancy by spatially mapping trees’
carbon content using their crown footprints relative to the plot
borders. The steps used to edge-correct carbon values depended
only upon their field measurements and allometric models.
First, they estimated crown radii from tree diameters using allo-
metric models, and then the trees’ predicted carbon content was
distributed uniformly over the predicted crown areas. Finally,
crown-distributed carbon predictions (small cells) were over-
laid with plot borders, The amount of mapped carbon falling
within a plot served as the edge-corrected carbon value for the
plot. The remaining ABA steps were then applied normally
with the edge-corrected carbon values used for model devel-
opment. The study provides an indication of the magnitude of
edge-tree errors, but in general it cannot be used in forest inven-
tory because it does not follow the established definition of
whether trees are “in” or “out” of the plot depending upon bole
location.

In this study, we present a method to account for edge-tree
discrepancy in ABA. We follow the traditional definition of
whether trees are “in” or “out” of the plot depending upon
bole location, but use methodologies from ITD to identify and
correct type 1 and 2 errors. The aim is to improve the perfor-
mance of ABA by considering the predicted crown attributes of
edge-trees,

II. MATERIAL

A, Study Area and Field Data

The study area is a boreal managed forest area in east-
ern Finland (62°31'N, 30°10'E). The field measurements were

carried out in the summer of 2010. A total of 79 field plots
were placed purposively (nonrandom) to reflect species and size
variation for the study area. The allocation of field plots was
based on development class and dominant tree species. Scots
pine (Pinus sylvestris 1..) is the dominant tree species repre-
senting about 75% of volume and the remainder consists of
Norway spruce (Picea abies [L.] Karst.) and a mixture of native
deciduous species.

This study used field measurements from concentric 6.37 m
(127 m? area) and 9 m (254 m? area) radius circular plots.
These data were extracted from larger 20 x 20 and 30 x 30 m?
stem-mapped plots, We will refer to these as 127 and 254 m?
plots, respectively. Field measured trees were positioned rel-
"ative fo predicted ITD tree locations that were confirmed in
the field. ITD detected trees not corresponding to field trees
were excluded whereas trees not detected by the ITD algo-
rithm were positioned using angle and distance measurements
to nearby [TD detected trees. The coordinates for the unde-
tected trees were estimated using the least squares adjustment
method described by Korpela ef al. {12]. A summary of plot-
level attributes is provided in Table 1. For all trees with either
DBH exceeding 4 cm or height exceeding 4 m, the diameter at
breast height {DBH), height, and tree species were recorded. A
tree’s DBH was estimated as the average of its maximum diam-
eter, and the diameter perpendicular to its maximum diameter.
The volumes of individual trees were calculated as a func-
tion of DBH and tree height using the species-specific models
developed by Laasasenaho [13]).

B, ALS Data

ALS data were collected on June 26, 2009 using an Optech
ALTM Gemini laser scanning system. The nominal pulse den-
sity was approximately 12 pulses/m?. The test site was scanned
from an altitude of approximately 600 m above ground level,
with a field of view of 26° and side overlap between transects of
55%. Pulse repetition frequency was set to 125 kHz. Side over-
lap of 55% means that each location is covered by at least two
flight lines. This configuration was used to maximize the prob-
ability that trees have ALS hits from two sides. This reduces the
occurrence of shadow areas in which tree foliage obstructs the
path of the laser from reaching behind trees.

A digital terrain model (DTM) was constructed by first clas-
sifying points as ground and nonground hits according to the
approach described by Axelsson [14]. A raster DTM of 0.5 m
spatial resolution was then obtained by interpolation using
Delaunay triangulation, Heights above ground (dZ) for ALS
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points were calculated by differencing their elevations above
the ellipsoid from corresponding DTM elevations.

HI. METHODS
A, Overview

The basis for our strategy is {o predict tree positions and
their crown delineations, and then modify plot and cell areas
using predicted tree positions and crowns. We will refer to this
method as enhanced ABA (EABA). Modified plots are used
in the modeling stage, and correspondingly modified cells are
used when a model is applied for an entire area. The method
requires that ALS data is suitable for individual tree delin-
eation (i.e., point density must be higher than in normal ABA).
EABA has five additional steps beyond typical ABA process-
ing including: 1) individual trees are detected and their crowns
are segmented; 2) edge trees (tree crown intersecting the plot
boundary) are identified; 3) edge trees are labeled as “in” (tree
apex is within the plot boundary) or “out” (tree apex is out-
side of the plot boundary); 4) edge trees which are “in"” the plot
are used to extend the plot boundary (type 2 discrepancy); and
3) the original plot and edge trees which are “out” are inter-
sected to identify type 1 discrepancy regions. Following steps 1)
to 5), ALS points are extracted for each modified plot or cell,
and the remaining anatyses are performed in the typical ABA
fashion.

In EABA, predictions are still made for the original plot
or cell areas, only predictor variables are computed using
modified plots and cells. More detailed descriptions of key
EABA steps are explained below. Finally, EABA performance
is benchmarked against a typical ABA strategy.

B. Individual Tree Crown Delineation

A preliminary CHM was created with pixel values set either
to the maximum ALS point height {dZ) within each pixel or
NoData, if there wese no ALS hits. Two passes of median fil-
tering with a 3 x 3 neighborhood were then run on the NoData
pixels only, in which a center pixel was replaced if there were
at least 5 (first pass) or 3 (second pass) height values within the
neighborhood. The remaining NoData pixels were set to zero,
A third pass was run on pixels considered as holes. A pixel was
designated as a hole if at least six of its neighbors were more
than 5 m higher than the pixel itself. The value for the hole pixel
was then replaced with the median of its neighbors. The pixel
size of the CHM was 0.5 m.

The CHM was low-pass filtered with a heighi-based filier-
ing [15], in which the scale of filtering increases relative to the
height of the pixel being processed. The CHM heights were
classified into eight height classes and a fixed Gaussian fileer
was run on the pixels of each class. The upper height limit of
lowest class was set 1o 4 m and the Gaussian scale parameter (¢)
to 0.3. The lower height limit of top-most class was set to
28.6 m and the scale parameter to 1.0. The remaining six heiglt
classes were spaced equally between the first and last classes
with the ¢ parameters scaled linearty between 0.3 and 1.0,

Trees were located on the CHM using watershed segmen-
tation. Watershed segments were delineated using a drainage
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Fig. 1. Modified plot delineation and predicted trees overlaid on the canopy
height model. Black crosses depict the predicted bole positions and green poly-
gons are used to designate crown borders. Extended plot areas are highlighted
in yellow, and areas with zeroed dZs are highlighted in red.

TABLE Ii
MEAN, STANDARD DEVIATION (SD), MINIMUM, AND MAXIMUM
FOR MODIFIED PLOT AREAS WITH RESPECT TO PLOT SIZE

Plot size 127 m® Plot size 254 m’”

Type 1 Type 2 Type 1 Type 2
Mean (%} 13.0 13.6 9.8 9.3
SD (%) 17.9 9.6 4.9 6.2
Min {%) 0.8 0.2 3.1 03
Max (%) 339 44.7 261 309

Type 1 and Type 2 refer to discrepancy type.

direction-following algorithm [16}, [17] on the negative image
of the height-filtered CHM. To separate crown and background
segments, pixels lower than two meters in height were masked
from the original segments. Finally, small segments with less
than four pixels were combined with a neighbor segment based
on the smallest average gradient on the segment boundary
between two segments,

C. Modified Sample Plot

The d7s are set to zero for type | discrepancy regions, ie.,
in areas where predicted trees are centered outside of the plot
but the crowns intersect with the original plot. Fig. 1 pro-
vides an example of an actual plot that has edge discrepancies.
There are eight trees with type 1 edge discrepancies. Areas with
zeroed dZs are shown in red (horizontal lines in BW version).
In preliminary tests we found that zeroing points for type 1 dis-
crepancies was more effective than attempting to adjust the plot
border to omit the points. In this case trees outside of the plot
do not intrude into the plot and therefore ALS points hit the
ground.

To correct for type 2 discrepancies, the bounds of the sample
plot are extended to contain the full tree crowns. Extended plot
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TABLE III
ESTIMATES OF COEFFICIENTS FOR ABA AND EABA USING 127 AND 254 m? SAMPLE PLOT SI1ZES

ABA 127m’ EABA 127m’

ABA 254m’ EABA 254m’

B, —3.2246 (0.0051)  f8, ~5.1479 (0.0004)

B, 0.6845 (4x107'%y B 07638 (<2%107")

B, 01222 (9x107'% B, 03033 (62167

£, -3.7944 (0.0064) B, —4.6052 {0.0002)

By 07092107} B 0.7252 (<2x10°%)

B 02472(<5x1077) B, 14497 (<2x 1076

The p-values of the coefficients are given in parentheses,

areas are marked in yellow (vertical lines in BW version) in
Fig. 1. By extending plot borders we improve the chance that
ALS points for a plot correspond to field measured trees. Note
that although the modified plot area is used when computing
predictor variables, predictions are still made for the original
plot or cell areas.

D, Predictor Variables

Predictor variables were computed separately with first and
last echoes. First echoes contained original echo categories
“first of many” and “only” and last echoes “last of many” and
“only”. Height (dZ) percentiles 5, 10, 20, ..., 80, 90, 95 were
computed for each sample piot using ALS points with dZs
ghove 2 m (hx-variables). For example, the percentile height
metric h90 for a plot is the 90th percentile height of dZs above
2 m. For each height percentile, corresponding density was
computed as the proportion of echoes below the height per-
centile in relation to all points {px-variables). In addition, the
mean {havg) and standard deviation (hsid) of above 2 m points,
and proportion of dZs above 2 m in relation to all points were
calculated (p2n1). Similar sets of predictor variables have been
used in many ABA studies. Predictor variables were computed
for original (ABA) and modified sample plots (EABA) using
127 and 254 m? sample plots.

E. Modeling

Regression models for the plot volume (V') were constructed
separately for ABA and EABA using 127 and 254 m? sample
plot sizes. Scatter plots of V versus the ALS predictor variables
indicaied nonlinear relationship between V and the ALS predic-
tor variables. After comparing models, we selected quadratic
model {1} whereby the square of ¥V appeared to provide lin-
ear refationship between plot volume and the ALS predictor
variables (2)

V= (Bo+BiXa+ -+ BpXp) 46 (m
VV =6+ B X+ + BpXp e )

where variance var(c) = ¢, V denotes plot volume, the
subscript p indicates the number of predictor variables in the
model, X indicates the various ALS predictor variables, and
Be ... B, indicate the regression coefficients. Prior to fitting
the nonlinear model form, predictor vanables were selected
using a stepwise algorithm (step function in R environment;
[18]) which relied upon AIC/BIC to rank potential models.

TABLE IV
ERROR STATISTICS FOR ABA AND EABA USING 127 AND 254 m?
SAMPLE PLOT SIZES

Piot size 127 m* Plot size 254 m°

ABA EABA ABA EABA
RMSE (%} 23.16 19.11 19.08 16.95
RSS (' ha™") 211 176 143775 147 085 115971

n
Residuat sum of squares (RSS)is > {y; — 9;)? and root mean square errar
im1

(RMSE) is 100 x %\/ERSS. where n is the number of plots, y; is the
cbserved value for plot 4, §; is the predicted value for plot ¢, and ¥ is the
mean of y.

This particular algorithm accepts a user-supplied parameter k
which can be used to increase the penalty for each additional
term included in the model. The stepwise selection process was
performed for the linear form of the regression model (2). Once
the predictor variables were selected, model coefficients were
estimated for the nonlinear model form (1) using nls function
in R environment [18}.

F. Model Assessment

Error rates were compared using RMSE values computed
for training data. RMSE is a commonly used measure of per-
formance in forest inventory and modeling-relaied analyses.
Actual prediction errors for new data are commonly larger on
average, but the difference does not affect comparisons between
ABA and EABA because it can be assumed that the rates of
over-fitling will be equivalent for ABA and EABA due to equal
model complexities [19].

We performed a hypothesis test to determine the probabil-
ity that the difference between ABA and EABA could arise
from random chance. Due to the known difficulty in speci-
{ying the sampling disiribution of RMSE values, we tested
the hypothesis that RMSE{ABA) < RMSE(EABA) using a
bootstrap approach [20]. Bootstrap samples were taken from
the original plots using sampling with replacement. The boot-
strap samples were always of the same size as the origi-
nal data, here 79. This was repeated 5000 times and for
each of these bootstrap samples we fitted ABA and EABA
models and computed RMSEs. After the bootstrap simula-
tions, we used the empirical sampling distribution to com-
pute the probability that the observed difference between
RMSEs for ABA and EABA could arise through random
chance.
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Fig. 2. Predicted volume by plot size for ABA and EABA methods. Arrowheads depict EABA predictions and tail ends depict ABA predictions, Observed volume
is on the X axis, predicted volume s on the Y axis and the solid line is the I-| line.

IV. RESULTS

Statistics for the areas of plots modified when performing
EABA regions are presented in Table IL. Statistics are pre-
sented in percent with respect to plot size, The average type |
discrepancy area was 9.8% of the area of an original 254 m?
precorrection sample plot and 13.0% of the area of an origi-
nal 127 m? precorrection sample plot. The variation (standard
deviation) among the areas corrected was high relative to the
mean, especially with 127 m? sample plots. The average area
of type 2 corrections was similar in area to the average area of
type I corrections, although ranges were slightly greater,

In stepwise variable selection, a penalty term k was selected
such that resulting models contained a small number of vari-
ables. Inclusion of extra variables may increase predictive per-
formance, but also increases the risk of over-fitting. Selection
of more complex models would also interfere with our primary
objective, which is comparison of the ABA and EABA per-
formances. We set the penalty term k to 9.5 which resulted in
models with two predictor variables for both ABA and EABA.
The models inciuded one height and one density variable in
each, which is a logical outcome because plot volume can
be considered as a function of height and density. The step-
wise variable selection procedure resulted in variables from first
echoes only, Hence, all the predictor variables listed in (3)-(6)
were computed from first echoes. The ABA model for volume
using 127 m? plots was

Vaga27 = (B1 + Bahavg + ﬁsme)z + €3 3)
the EABA model for the volume using 127 m? plots was
Viaga, 127 = (B4 + Bshavg + Bep50)” + €2 4)
the ABA. mode! for volume using 254 m? plots was
Visa,254 = (Br + Bsh50 + Bop50)° + e (s)

and the EABA model for the volume using 254 m? plots was

Viana2sa = (Bio + B1ih50 + Bropi0)¥ 4 &4 (6)

where .12 are regression coefficients, and g1, 4 are the resid-
ual vectors. The estimates of coefficients for all models are
listed in Table 111,

RSS and RMSE indicate a better fit for the EABA model
than for the ABA model (Table IV), With respect to RMSE, the
performance improved from 23.16% to 19.11% with 127 m?
plots and from 19.08% to 16.95% with 254 m? plots, so the
improvement was 17% with small and 11% with large plots.
Although the variables selected in the two approaches differed,
the choice of variables had minimal impact on our inference
as model’s RMSEs were nearly identical when we exchanged
variables selected for ABA and EABA within the same plot
size. The bias originating from nonlinear least squares fit was
between 0.06% and 0.1%. The error rate for ABA is similar o
what has been observed in other studies in Nordic countries.

In the event of a practical difference between EABA and
ABA RMSE's, the statistical significance was tested with a
bootstrap procedure. Following 5000 bootstraps with 127 m?,
plots RMSE (ABA) was less than RMSE (EABA) in 1.46%
simulations. Corresponding figure for 254 m? plots was 0.62%.
In other words, predictions are highly statistically significant
with a “p-values” 0.0062 and 0.0146. These results indicate
that the apparent improvement in RMSE for EABA is unlikely
to arise due to random chance; we have a high degree of
confidence that EABA provides lower error rate than ABA,

Fig. 2 shows predictions of ABA and EABA overlaid on the
1-1 line. Small sample plots are on the left side and large sam-
ple plots are on the right side. Observed volume is on the X axis
and predicted volume is on the Y axis. The tip of the arrowhead
depicts an EABA value and the base of the tail end depicts an
ABA value. The direction and length of the arrow reflect the
magnitude and direction of the differences between predictions
from ABA and EABA. The changes reflect improvement (arrow
toward 1-1 line) in most cases, Arrows are generally longer with
the small sample plots which indicate that the magnitude of
edge-tree correction was greater with small than large sample
plots. This is a logical outcome since with small sample plots,
larger portion of plot area was modified (see Table II}. In the
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cases where the ABA residuals are largest, the EABA approach
appears to provide the most dramatic improvements.

V. DISCUSSION AND CONCLUSION

The EABA method we developed provided a lower error
rate than a typical ABA approach. The greatest improvements
were obtained for plots with the largest residuals. The improve-
ment was achieved by detecting and delineating individual trees
and including or excluding ALS points based on predicted
crown attributes. This is conceptually the opposite of the pro-
tocol used by Mascaro ef al. [11] in that they used predicted
crown attributes to adjust the response values, while we used
the predicted crown attributes to adjust predictor values. EABA
follows more closely with typical field measurement protocols
in that bole position exclusively defines whether a tree falis
into the sample plot or not. Therefore, EABA enables predic-
tion of new observations in the manner typically used in forest
inventories.

The problem of sampling trees located near a stand edge
is a well-known in forest inventory, Trees near the border of
a region have different inclusion probabilities, which causes
design bias if not taken into consideration {21]. In this study,
we are concerned with model bias that arises due to measure-
ment etror in the predictor variables. The presence of noise
in the response variable does not affect the consistency of the
parameter estimates, however, the presence of noise in the pre-
dictor variables causes the fitted model coefficients to be biased
toward zero ([22], p. 349). Since the ABA have type 1 and
type 2 discrepancies, the EABA process reduces the source of
bias.

Plot size was shown to affect edge errors and ABA perfor-
mance. As plot size decreased, the proportion of edge-trees
increases and consequently error due to edge-trees increased,
This means that, on average, the improvements from edge
correction methods should also increase for smaller plots. In
this study, this effect was examined for two plot sizes, 127
and 254 m?. The results agreed with our hypothesis: rela-
tive improvements were less for large plots (11% improve-
ment) than for smail plots (17% improvement). We achieved
approximately the same error rate (RMSE) with smaller plots
using EABA (19.11%) as with larger plots with typical ABA
(19.08%). These results suggest that we could potentially mea-
sure 50% fewer trees with the smaller plots (50% smaller in
arez) using the EABA method and achieve the same perfor-
mance as we would receive with ABA with the larger plots.

The proportion of edge-trees and magnitude of errors will
also differ depending upon the type of forests, trees’ dispersion
patterns, tree size distributions, and crown shape. In savannah
forests, for instance, there are typically few trees, and they have
relatively wide crowns. Even for plots that are substantially
larger than is typically used in boreal forests, edge-trees errors
in savannah forests may have an even greater effect on error
rates than in boreal forests,

The EABA method requires higher density ALS data than
ABA because improvement is obtained by means of detect-
ing individuat trees. This is an important consideration because
the cost of ALS data increases with density. However, some
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studies have indicated that the point density does not have to be
very high in ITD. Kaartinen ef al. [3], for instance, found only
marginal improvements in tree delineation using point densities
higher than 2 points m~2. Given historical trends with respect
to ALS technology, the advancement of ALS sensor technology
means that point densities will most likely increase in future—
increasing the number of instances where ITD methods can be
used to support our EABA strategy. While EABA makes use of
I'TD methods, the approach does not require field measured tree
positions—a significant advantage over typical ITD methods,

A research question that remains is what degree of accuracy
of crown delineations is necessary to obtain improvements with
EABA. One might also assume that in ABA edge-tree errors
cancel out in adjacent cells, and therefore ABA would bene-
fit more from aggregation than EABA. Although more studies
are needed before we can make definitive conclusions about
the relative performances of ABA and EABA methods, under
the conditions encountered for this study, the proposed EABA
method had a lower error rate than typical ABA.

REFERENCES

{11 M. A. Walder, C. W. Bater, N. C. Coops, T. Hilker, and J. C. White, “The
role of LiDAR in sustainable forest management,” For. Chron., vol. 84,
no. 6, pp. 807-826, 2008.

[2] 1. Vauhkonen er al., “Comparative testing of single-tree detection algo-
rithms under different types of forest,” Forestry, vol. 85, no. 1, pp. 27-40,
2011,

[3] H.Kaartinen ef al., “An international comparison of individual tree detec-
tion and extraction using airbome laser scanaing,” Remote Sens., vol. 4,
no. 4, pp. 950-974, 2012,

{4] T.TFakahashi, K. Yamamoto, Y. Senda, and M. Tsuzuku, “Predicting indi-
vidual stem volumes of sugi (Cryptomeria japonica D. Don) plantations
in mountainous areas using small-footprint airborne LiDAR," J, For. Res.,
vol. 10, no. 4, pp. 305312, 2005.

[5} J. Vauhkonen, I. Korpela, M. Maltamo, ant T. Tokola, “Imputation of
single-tree attributes using airborne laser scanning-based height, inten-
stty, and alpha shape metrics” Remote Sens. Environ., vol, 114, no. 4,
pp. 1263-1276, 2010,

6] E.Nemsset, “Predicting forest stand characteristics with airborne scanning

laser using a practical two-stage procedure and field data,” Remote Sens.

Environ., vol. 80, no. 1, pp. 88-99, 2002,

P. Packalén and M, Maltamo, “The k-MSN method for the prediction of

species-specific stand attributes using airborne laser scanning and aerial

photographs,” Remote Sens. Environ., vol. 109, no. 3, pp. 328-341, 2007,

[8] F. Loetsch, F. Zoehrer, and K. E. Haller, Forest Inventory, vol. 2,
Miinchen, Germany: BEV-Verlagsges, 1973, p. 469.

[9] R. Nelson er al., “Technical note: Canopy height models and airbome
lasers to estimate forest biomass: Two problems,” fmt. J. Remoie Sens.,
vol. 21, ro. 11, pp. 2153-2162, 2000.

{107 E. Nasset, O.-M. Bollandsés, T. Gobakken, T. G. Gregoire, and G. Stihl,

“Model-assisted estimation of change in forest biomass over an 11 year

period in 2 sample survey supported by airbome LiDAR: A case study

with post-stratification 1o provide “activity data”™,” Remote Sens, Environ.,

vol, 128, pp. 299-314, 2013,

1. Mascaro, M. Detto, G. P. Asner, and H. C. Muller-Landau, “Evaluating

uncertainty in mapping forest carbon with airborne LiDAR," Remote

Sens, Environ., vol. 115, no. 12, pp. 3770-3774, 2011,

1. Korpela, T. Tuomola, and E. Vilimaki, “Mapping forest plots: An effi-

cient method combining photogrammetry and field triangulation,” Sifve
Fennica, vol. 41, no. 3, pp. 457468, 2007.
J. Laasasenaho, “Taper curve and volume function for pine, spruce and
birch,” Conmnun. Inst. For. Fenn., vol. 108, pp. 1-74, 1982,
[14} P. Axelsson, “DEM generation from laser scanner data using adaptive
TIN models,” in Proc. Int. Arch. Photogramm. Remote Sens., Amsterdam,
The Netherlands, Jul. [6-22, 2000, vol. XXX, part B4, pp. 110-117.

f15] I Pitkiinen, M. Maltamo, I, Hyypp, and X. Yu, “Adaptive methods for
individual ree detection on airborne laser based canopy height model,”
in Proc. Int. Arch. Photogranm. Remote Sens., Freiburg, Germany, Oct.
3-6, 2004, vol. XXX VI, part 8/W2, pp. 187191

i7

—

(11

{£2]

[13]



1280

(16) 1. M. Gauch, “Image segmentation and analysis via multiscale gradient
Vwatershed hierarchies," fEEE Trans. Image Process., vol. 8, no. 1, pp. 69—
79, Jan. 1999,

P. M. Narendra and M. Goldberg, “Image segmentation with directed
trees.” 1EEE Trans. Pattern Anal. Mach. Intefl,, vol, 2, no. 2, pp. 185-191,
Mar. 1980,

R Development Core Team, R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2011, ISBN 3-900051-07-0.

T. Hastie, R. Tibshiranl, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. Bertin,
Germany; Springer-Verlag, 2009, p, 745,

B. Efron and R. J. Tibshirani, An Introduction te the Bootstrap. London,
U.K.: Chapman & Hall, 1993, p. 456.

T G. Gregoire, “The unbiasedness of the mirags correction procedure for
boundary overlap,” For. Sel., vol. 28, no. 3, pp. 504-508, 1982, )
1. Kmenta, Elements of Econometrics, 2nd ed. Ann Arbor, M, USA:
Univ. of Michigan Press, 1997, p. 800.

(17

(18]

(193

{20

21

22]

Petteri Packalen was born in Rauma, Finland, in
1973. He received the M.Sc, Lic.Sc., and D.Sc.
degrees in Forestry from the University of Joensuu,
Joensuu, Finland, in 2002, 2007, and 2009, respec-
tively.

Currently, he is a University Researcher in for-
est mensuration with the School of Forest Sciences,
Faculty of Science and Forestry, University of Eastern
Fintand, Joensuy, Finland. Previously, he has been
ant Assistant, Senior Assistant, and Professor with
the Faculty of Forestry, University of Joensuu. From
August 2011 to July 2012, he was a Visiting Research Scientist at the Oregon
State University, Corvallis, OR, USA. He has authored over 70 peer-reviewed
research articles. Recently, his focus has been on nearest neighbor imputation,
combined use of ALS and spectral data in forest inventory, and the use of
ALS in wildlife management. Since 2007, he has also been a Consultant for
remote sensing-based forest inventory, His research interests include both prac-
tical and theoretical aspects of vtilizing remote-sensing data in the monitoring
and assessment of the forest enviroament.

Jacob L. Strunk received the B.Sc. and M.Sc. degrees in forest science from
the University of Washington, Seattle, WA, USA, and the Pi.D. degree in
forestry and M.Se. degree in statistics from Oregoa State University, Corvallis,
OR, USA.

From 2012 to 2014, he worked part time with Aerometric Inc,, Seattle, WA,
USA and was a Post-Doc with Oregon State University. Since the beginning
of 2014, he has been working with Washington State Department of Natural
Resources, Olympiz, WA, USA, co-implementing a remote-sensing augmented
forest inventory and continuing his research on related jopics. He also has a
courtesy faculty appointment with Oregon State University.

Dr. Strunk is a member of the Society of American Foresters and the
American Society of Photogrammetry and Remote Sensing.

{EEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. §, NO. 3, MARCH 2015

Juho A. Pitkiinen was born in Kuopio, Finland, in 1964, He received the M.S.
degree in forestry from the University of Joensuu, Joensuu, Finland, in 1991

From 1991 to 2005, he was mainly a Project Researcher and a Research
Assistant with the University of Joensuu. Since 2003, he has been z Senior
Researcher with the Finnish Forest Research Institute, Joensuu, Finland, which
was merged into the Natural Resources Institute Finland, when it was estab-
fished in 2015. His research interests include remote sensing in large area forest
inventories and individual tree detection-based inventory methods on aerial
image and ALS data.

Hailemariam Temesgen received the B.Sc. degree
in plant sciences from Alemaya University of
Agticulture, Alemaya, Ethiopia, in 1985, the M.Sc.
degree in guaatitative silviculture from Lakehead
University, Thunder Bay, ON, Canada, in 1992,
and the Ph.D. degree in forest biometrics from the
University of British Columbia (UBC), Vancouver,
BC, Canada, in 1999,

From 1999 to 2003, he was a Research Associate
in forest biometsics and measurements with UBC
and a Visiting Scientist at the Institute of Forest
Management, and yield studies at the University of Gottingen, Gottingen,
Germany. Since 2003, he has been Assistant, Associate, and Full Professor
in forest hiometrics and measurements with Oregon State University (OSU),
Corvallis, OR, USA. His research interests include the development and appli-
cations of natural resource measurement and analysis techniques including
developing efficient imputation, sampling and modeling techniques, and linking
ground and remotely sensed data,

Prof. Temesgen was the recipient of the Emerging Scholar Award for
Excellence at OSU in 2009 and Xi Sigma Pi Student Society’s Mentor award
in 2008. He serves as coordinator for the International Union of Research
Organization’s Research Group 4.01—Forest Mensuration and Modeling. He
served as Associate Editor of the Western Jowrnal of Applied Forestry, and
currentiy serves as Associate Editor for Ferest Ecology and Management.

Matti Maltamo was born in Jyviskyld, Finland, in
1965. He received the M.Sc., Lic.8c.,, and D.Sc.
degrees (Hons.) in forestry from the University of
Joensuu, Joensun, Finland, in 1988, 1992, and 1998,
respectively.

He is a currently the Professor of Forest
Mensuration Science with the Faculty of Science
and Forestry, University of Eastern Finland, Joensuu,
Finland. He has alse worked as Vising Professor
at the Research Group of Professor Erik Maesset,
Norwegian University of Life Sciences, Akershus,
Norway. He was together with Nacsset and Jari Vauhkonen the editor of the
textbook “Forestry Applications of Airborne Laser Scanning—Cencepts and
Case Studies™ (2014). He has authored more than 150 scientifically refereed
papers, His research interests include forestry applications of ALS. He is an
Associate Editor of the Canadian Journal of Forest Research,

Prof. Maltamo won together with professor J. Hyyppd the First Innovation
prize of the Finnish Society of Forest Science in 2010 about “Bringing airborne
laser scanning te Finland. Maltamo also obtained bronze A.K. Cajander medal
of the Finnish Society of Forest Science, 2012.



