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Uncertainty in above ground forest biomass (AGB) estimates at broad-scale depends primarily on three
sources of error that interact and propagate: measurement error, model error, and sampling error.
Using Monte Carlo simulations, we compare the total propagated error for two sets of regional-level com-
ponent equations for lodgepole pine AGB, and for two sets of high-precision instruments by accounting
for all three of these sources of error. The two sets of models compared included a set of newly-developed
component ratio method (CRM) equations, and a set of component AGB equations currently used by the

poors: Forest Inventory and Analysis (FIA) unit of the United States Department of Agriculture (USDA) Forest
Pacific Northwest :
Model error Service.

Relative contributions for measurement, model, and sampling error using the current regional equa-
tions were 5%, 2% and 93%, respectively, and 13%, 55% and 32%, respectively using the CRM equations.
Relative standard error (RSE) values for the current regional and CRM equations with all three error types
accounted for were 20.7% and 36.8%, respectively. Results for the model comparisons indicate that per
acre estimates of AGB using the CRM equations are far less precise than those produced with the current
set of regional equations. Results for the instrument comparisons indicate the terrestrial lidar scanning

Sampling error
Measurement error

reduce uncertainty in broad-scale estimates of AGB attributed to measurement error.

© 2015 Published by Elsevier B.V.

1. Introduction

Increasingly central to the planning and monitoring-related
goals of disciplines such as forestry and ecology, the production
of defensibly precise broad-scale estimates of above ground bio-
mass (AGB) but requires a thorough recognition of their primary
associated sources of variability (Temesgen et al., 2007). The wide-
spread sample-based approach of acquiring these AGB estimates
for forested areas typically involves applying individual-tree

Abbreviations: AGB, aboveground biomass; CRM, component ratio method;
CRM-FIA, component ratio method used by FIA; CV, coefficient of variation; DBH,
diameter at breast height; DNF, Deschutes National Forest; DOB, diameter outside
bark; FIA, Forest Inventory and Analysis; HT, total tree height; HTCB, height to the
base of live crown; NFI, National Forest Inventory; RMSE, root mean square error;
RRMSE, relative root mean square error; RSE, relative standard error; SE, standard
error; STM, standing tree measurements; SUR, seemingly unrelated regression;
TTWOF, total tree aboveground biomass without foliage; WNF, Willamette National
Forest.
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regression equations to trees selected within randomly selected
sample plots to obtain tree-level estimates of AGB. All
individual-tree estimates are then summed to obtain plot-level
estimates, with all plot values subsequently expanded up to per
unit area levels of ABG. The reported precision of these per unit
area estimates using this approach commonly reflect only the sam-
pling error; the variability resulting from among-plot differences in
plot-level values of ABG. In addition to sampling error, two other
primary sources of error have been shown to interact and propa-
gate during the process of scaling individual-tree estimates of
AGB up to per unit area levels; namely measurement error and
model error (Cunia, 1965). Measurement error is defined as the dif-
ference between a defined “true” value and the measured value of
a given attribute. Model errors are sourced mainly from the resid-
ual variability around the model predictions and uncertainty in the
parameter estimates. Because only sampling error is accounted for,
uncertainty estimates for AGB are often an underestimation of the
actual uncertainty. If uncertainty estimates for AGB are to be statis-
tically credible, all three of these error types must be accounted for.

Measurement error is a source of uncertainty that has received
broad attention in the forestry literature. A number of authors have
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investigated the measurement error of particular instruments used
in forestry applications (Behre, 1926; Bell and Gourley, 1980;
McRoberts et al., 1994; Williams et al., 1994; Skovsgaard et al.,
1998; Plamondon, 1999; Kalliovirta et al., 2004), while others have
characterized the distributions of measurement errors for mea-
sured tree variables (McRoberts et al., 1994; Canavan and Hann,
2004). Work has also been done to investigate the effects of mea-
surement error on the uncertainty of forest model predictions
(Westfall and Patterson, 2007; Suty et al., 2013; Berger et al,,
2014). Westfall and Patterson (2007) used the two stage error dis-
tribution method, also described by Canavan and Hann (2004), to
model measurement variation distributions. Using quality assur-
ance data from 682 inventory plots implemented by the Forest
Inventory and Analysis (FIA) unit of the United States
Department of Agriculture (USDA) Forest Service, they were able
to assess the effects of measurement variability on several volume
change estimates, including ingrowth, accretion, removals and
mortality. Error due to measurement variability was minimal com-
pared to the sampling variability, with accretion being the most
sensitive to systematic measurement errors. Suty et al. (2013) used
Taylor series expansion and empirical comparisons between two
volume growth prediction methods to illustrate the effect of intro-
duced bias from random measurement errors to inputs for
non-linear volume growth models used in the Swedish National
Forest Inventory (NFI). Similarly, Berger et al. (2014) used Taylor
series expansion and Monte Carlo simulations to approximate
the effects of measurement errors in four independent variables
on the relative error of stem volume equations currently used in
the Austrian NFI. None of these studies, however, investigated
how measurement error affected broad-scale AGB estimates.

The effects of model errors on the variability of broad-scale for-
est inventory estimates are well described. Breidenbach et al.
(2014) assessed how variability in models used by the
Norwegian NFI affects biomass stock and change estimates for
Norway spruce. A parametric bootstrap approach was employed
to quantify the contributions of parameter estimate uncertainty,
inflated model residual variance and within-plot correlation to
the total uncertainty of biomass stock and change in Norway.
McRoberts and Westfall (2014) used Monte Carlo simulations to
examine how volume model-related variability influences
broad-area estimates generated from 2178 FIA plots across a study
area in northeastern Minnesota, USA. A comparison was made of
the gains using species-specific models versus coniferous/decidu-
ous nonspecific models, calibrated from a species-specific dataset
collected from 2102 trees across 24 states of the northern and
northeastern Unites States. Both of these authors found the model
errors to be minimal contributors to the total uncertainty.
However, neither studies investigated the effects of measurement
error as well.

Unfortunately, very few studies have addressed the effects of all
primary sources of error on broad-scale forestry inventory esti-
mates (Temesgen et al, 2015). Mowrer and Frayer (1986)
addressed the effects of measurement error, model error and sam-
pling error by measuring the cumulative variance of five 10-year
projections from a growth and yield model for pure even-aged clo-
nal quaking aspen using both Taylor series expansion and Monte
Carlo simulations. Gertner (1990) approximated the effect of all
three sources for non-linear individual-tree volume functions used
to estimate stand-level volume per acre. Chave et al. (2004) exam-
ined the effects of these different sources of error using permanent
plot data from the moist forests of the canal region of Panama. In
addition to the three aforementioned error sources, the magnitude
of uncertainty from the specific model form chosen was assessed.
This study is similar in that all three forms of error were empiri-
cally compared for two different sets of component models devel-
oped for lodgepole pine (Pinus contorta) for use in the Pacific

Northwest region. In doing so, we were able to produce credible
depictions of uncertainties useful for determining which model is
the most reliable for future use.

1.1. Component ratio method

The FIA is charged with the task of providing stock and change
estimates for a large number of national-scale forest-related vari-
ables, with their estimates of AGB being drawn upon and used
for a wide range of applications. Regional-level equations for small
to mid-level estimation in specific regions are publicly available
and used by many individuals seeking species-specific localized
component estimates of AGB. However, these suites of equations
often source from an array of different studies, inconsistent
methodologically and in sample size, often yielding AGB estimates
that differ across regions for trees of identical size and species. To
address consistency issues in estimation across regions, the
national-level Jenkins equations were developed and used by FIA
for national-scale estimation (Jenkins et al., 2003). Stemming from
extensive meta-analysis of 2640 published equations for compo-
nent and total-tree biomass, the resultant Jenkins equations are a
group of 10 generalized component and total tree biomass equa-
tions with diameter at breast height (DBH) as the only independent
variable.

Reservations about the low-level of species specificity of these
generalized models arose when large variations of AGB estimates
were observed when applied to smaller-scale operations. This
was illustrated by Zhou and Hemstrom (2009) who observed
Jenkins estimates of total AGB of softwoods in the state of
Oregon to be 17% greater compared to regional species-specific
equations. Hence, in 2009 a new component ratio method (CRM)
was proposed as the standard for nationwide AGB reporting. This
method uses a combination of the component ratios from the
Jenkins equations, regional bole volume equations and percent
bark estimates, so as to ensure consistency with regional
tree-level volume estimates (Heath et al.,, 2008; Woodall et al.,
2011). However, despite the conformance with regional-based
estimates of bole volume, the reliance on the national-scale gener-
alized Jenkins component ratios yields the same non-specificity for
regional and finer-scale applications.

A new set of species-specific CRM component equations for
lodgepole pine (P. contorta) are presented here for comparing total
uncertainties with those produced from the current regional equa-
tions. These new CRM equations are heretofore referred to as the
CRM equations; the hybrid CRM method described in the previous
paragraph will be referred to as CRM-FIA. These new CRM equa-
tions originate from a pilot research study aimed at developing
new regional-level models for AGB consistent across regions.
Rather than rely on the component ratios from the Jenkins models
and the current regional volume models, these equations directly
predict the proportion of tree-level AGB for bole wood, bark,
branch wood and foliage. With these new CRM equations for com-
ponent AGB stemming from one study, rather than a host of differ-
ent studies as with the current regional equations, and with the
specificity for use in smaller, more localized operations, the prior
stated issues with consistency, specificity and congruence are
addressed. The three independent variables for these new models
are DBH, total height (HT) and height to crown base (HTCB).

To evaluate the performance of these new equations relative to
the current regional approach for estimating tree-level AGB for
lodgepole pine, comparisons of the magnitude of the cumulative
propagated error will be made between the two sets of equations.
Using Monte Carlo simulations, and applying both sets of equa-
tions to cluster sample plot data associated with destructively
sampled trees used for development of the new CRM models, we
were able to quantify the effects of measurement and model error



20 M. Shettles et al./Forest Ecology and Management 354 (2015) 18-25

on the precision of per unit area estimates of AGB for both
approaches.

2. Methods
2.1. Study locations

In order to capture regional differences in tree form, the data for
this study were collected from both the Willamette National Forest
(WNF) and the Deschutes National Forest (DNF) in western and
central Oregon, respectively, All locations were within a
mid-elevation band, with the WNF locations spanning from 1160
to 1340 m in elevation and the DNF locations from 1280 to
1340 m in elevation. The WNF locations encompassed two forest
types: (1) a diverse mixed-species coniferous forest, with observed
species being Douglas-fir (Pseudotsuga menziesii), western hemlock
(Tsuga heterophylla), lodgepole pine, mountain hemlock (Tsuga
mertensiana), noble fir (Abies procera), Engelmann spruce (Picea
engelmanii), and western white pine (Pinus monticola); and (2) a
homogenous coniferous forest composed of primarily lodgepole
pine and with a small element of grand fir (Abies grandis). The
DNF locations encompassed one forest type of homogenous conif-
erous species composition, with observed species being lodgepole
pine and ponderosa pine (Pinus ponderosa).

2.2. Field data

For all locations, accessible sample trees were subjectively
selected based upon morphological characteristics that included
DBH, HT, and crown ratio (CR), as well as absence of defect or
abnormalities. Efforts were taken to select sample trees either
located in different forest stands types, or sufficiently distanced
apart so as to avoid issues with spatial autocorrelation. A total of
32 trees were measured over a four week period during July and
August 2013. DBH, HT and CR ranged from 13.5 to 42.9 cm, 9.2
to 31.9 m and 0.30 to 0.948, respectively.

Standing-tree measurements were conducted prior to felling,
with DBH being measured to nearest 0.254 cm using a Spencer
combination tape and with both HT and height to crown base
(HTCB) being measured to the nearest 0.03 m using a Trupulse
Laser Rangefinder 360R. For this study, HTCB was defined as the
bole height of the first live limb. Downed-tree measurements of
HT and HTCB were measured with a 30.48 m open reel fiberglass
tape. Due to the need for determining the point on the bole where
1.3 m. above the uphill side of the tree was located prior to felling,
and because DBH was measured with strict attention to detail
while the sample trees still stood, standing-tree measurements of
DBH were considered to be the “true” values and were not subse-
quently re-measured. It should also be noted that a large number
of additional measurements that were not independent variables
into the models were taken on the felled trees for the creation of
the new CRM equations.

For estimation of component biomass per unit area, ground plot
data was collected from the forest stands from which the 32 sam-
ple trees were sourced. All trees (>10 cm diameter) within a cluster
plot comprised of four circular fixed area subplots arranged around
each sample tree were measured for attributes such as species,
DBH, HT and HTCB, among others. A 0.017 hectare plot was the pri-
mary subplot (radius 7.32 m) with the pith of the sample tree as
the center. The centers of the other three circular subplots were
located 36.58 m at azimuths of 120°, 240° and 360° from the pith
of the sample tree. The secondary subplots were 0.008 hectares
in area (radius 5.18 m), this reduction in plot size being a reflection
of the relative importance of these plots to the central goal of max-
imizing the number of trees sampled.

2.3. Models compared

The Pacific Northwest unit of the FIA currently uses three differ-
ent equations for bole, bark and branch AGB, and a published wood
specific gravity value (USDA Forest Products Laboratory, 2010) to
estimate lodgepole pine component AGB for region-specific appli-
cations (Zhou and Hemstrom, 2010). The summation of all three
component estimates of AGB is the total tree estimate of AGB,
without foliage. Bole AGB for lodgepole pine is estimated by first
predicting total bole wood volume using the following equation
published by Brackett (1977):

CVTS; = 10-2615591+1.847504 xlog(DBH; )+ 1085772 log(HT;) (1)

where CVTS; is the predicted total main bole wood volume includ-
ing top and stump (ft?), DBH is in inches, height is in feet, and log(-)
is the logarithm function (base 10). This prediction is then multi-
plied by the following species-specific average wood density value
to obtain bole AGB:

Bole AGB; = (CVTS; x WD)*0.45359 (2)
with
WD =SG x W (3)

where Bole AGB; is the predicted oven-dry bole biomass (kg) for the
ith tree, WD is the calculated wood density value (Ibs/ft?), 0.45359
is factor converting pounds to kilograms, SG is the published wood
specific gravity value for lodgepole pine (0.38) and W is the density
of water (62.4 Ibs/ft>).

Bark and branch AGB for lodgepole pine are estimated by using
the following equations published by Standish et al. (1985):

. 2
Bark AGB; = 3.2 + 9.1 x (D?];g“‘) x HT i (4)

DBHcm.i
100

2

Branch AGB; =7.8 +12.3 x ( > x HT (5)
where Bark AGB; is the predicted oven-dry bark biomass for the
standing tree bole up to a 2.5 cm bole diameter (kg) for the ith tree,
Branch AGB; is the predicted oven-dry branch biomass of wood and
bark of live limbs attached to the main bole (kg) for the ith tree,
DBHp; is diameter at breast height (cm) and HTy; is total tree
height (m).

The new CRM equations under comparison here directly predict
the proportion of AGB for the bole, bark, branch and foliage compo-
nents. These proportions can then be multiplied by an estimate for
total tree AGB of the user’s choice. In this study, the total tree bio-
mass equation used was produced using the same data used to cre-
ate the CRM equations for lodgepole pine. Both the CRM equations
and the total tree biomass equation were fit in separate systems of
equations using the seemingly unrelated regression method (SUR)
in SAS statistical software (SAS Institute Inc., v9.4). The four CRM
component equations and the total tree equation by Poudel
(2014) are of the form:

2
pBole; = exp [ﬁo + B; x In(DBH;) + 8, x In(HT;) + %} (6)
Bark; = ex In(DBH; Ps < 7
pBark; = exp |f + iy x In(DBH) + b + % @)
2
pBranch; = exp {[36 + f7 x In(DBH;) + g x In(HTCB;) + %} (8)

2
pFoliage; = exp {ﬁg + Bro x In(DBH;) + f1; x In(HTCB;) +%} ®)
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P13, 0°

Total Tree; = exp |, + DB+ 7} (10)

where pBole;, pBark;, pBranch; and pFoliage; are the estimated pro-
portions of component AGB for bole wood, bark, branches and foli-
age, respectively, exp(-) is the exponential function, In(-) is the
natural logarithm function and the Bss are the estimated parame-
ters from the SUR procedure. The "72 is the correction factor, as
described by Baskerville (1972) and McRoberts and Westfall
(2014), for the resulting bias when back-transforming model pre-
dictions from the logarithmic to the initial scale of interest, where
62 is the estimated mean squared error, or residual variance. In

the above equations, the values of the s and 62 are expressed on
the logarithmic scale. For ease of future readability, all models,
whether CRM, total tree or current regional models will be generally
referred to as component models, unless where the mentioning of a
specific model is deemed necessary.

2.4. Measurement error variability

For HT and HTCB, the differences between the standing-tree
measurements and the downed-tree measurements were calcu-
lated for all 32 trees. In this study, the downed-tree measurements
are considered to be the known “true” values due to the ease with
which measurements could be taken as accurately as possible. The
summary data for these differences were subsequently calculated
for each input variable for the models (Table 1).

Using a grouping method detailed by Hosmer and Lemeshow
(1989), and implemented by Berger et al. (2014), a simple linear
regression model through the origin was constructed to predict
the standard deviation of the measurement errors. In order to
conduct regressions of standard deviation of measurement
errors on input variables, the data required grouping. Using
the notation and general methodology of Berger et al. (2014) for
the example of HT: (1) the data were sorted in ascending order
with respect to downed-tree measurement HT values; (2) with
the minimum 10 groups, as recommended by Hosmer and
Lemeshow (1989), the sorted HT values were grouped into
groups of size 3, with the last group including the remainder of
the HT values; (3) for every gth group, the means of the HT
measurements from step 1 and SDwg; were estimated, where

SDmeg = 715 \/ > -1 (MEnrg — MEHT.g)2 is the standard deviation of
the measurement errors for HT and MEyrg = HTp — HTs are the
HT measurement errors, where HTp is the downed-tree height
measurement and HTs is the standing-tree height measurement;
(4) the following model form was fit to the grouped data for HT
using the method of ordinary least squares:

SDyeHT = [51 x HT (11)
where S/I\DME,HT is the estimated standard deviation of the measure-
ment errors for HT and $; is the model parameter estimate.

2.5. Integrating simulated measurement errors into model uncertainty

We based our methods of integrating the measurement error
into the model uncertainty on those described by Berger et al.
(2014). Using the standard deviations from Table 1 and Eq. (11),

Table 1
Summary statistics of the measurements errors for HT and HTCB.
n Min. Mean Max. SD
HT (m) 32 -2.56 -0.82 2.26 0.83
HTCB (m) 32 -1.04 -0.07 137 0.49

Monte Carlo simulations, conducted using R software (R Core
Team, 2012), were used to approximate model uncertainties reflec-
tive of the additional uncertainty due to measurement error.
Within each simulation, we were able to produce measurement
errors that were then applied to “true” input values from the
downed-tree measurements to produce “contaminated” input val-
ues for the equations. Input variable contamination was a two part
process. For consistency, we will stay with the example of HT. First,
for the kth component model, a multiplicative factor ~N(1, SDZ;)
was randomly generated and multiplied together with the input
variables, where SDyr is the standard deviation of the height mea-
surement errors in Table 1; and (2) an additive factor ~N(O,

SD%; yr) Was randomly generated and added to the input variables,

where ST)ME,HT is the predicted standard deviation from Eq. (11)
(Berger et al., 2014).

The resultant contaminated model predictions were recorded
over 5000 iterations, for all component models. The impact of
the additional uncertainty was assessed by calculating the mean
prediction and root mean square error (RMSE) and the relative
RMSE (RRMSE) over all iterations using the dataset of 32 trees with
the following formulas:

mean :%Z?i (12)
i=1
1 ~ 2

RMSE = /- >0 (Y~ Y1) (13)

where Y; is the observed value and ?,» is the prediction for the ith
tree. RRMSE is calculated by simply dividing RMSE by the mean.

To convert the CRM predicted ratios and RMSEs to tree-level
units (oven-dry kg) as displayed in Table 2, two steps were taken;
(1) the CRM ratios were multiplied by the prediction for total tree
biomass produced by Eq. (10) to obtain tree-level predictions of
component AGB; (2) to produce absolute RMSEs for this product,
the square root of the sum of the squared relative RMSEs was mul-
tiplied by the predictions in step 1. The following formula for the
combined RMSEs is

2 2
SAGBcomp = AGBcomp x $ (fz/\GE]fRatm) N <6AA/GG\;H) 14)
Ratio TT

where dAGBcomp is the combined RMSE in tree-level units, 6AGBgatio
is the RMSE for the CRM component ratios and §AGByy is the RMSE
for total tree AGB (Eq. (10)).

2.6. Integrating models errors into sampling uncertainty

In order to integrate the model errors, contaminated or not, into
the sampling uncertainty, the magnitude of the model errors inte-
grated needed to be contingent upon the magnitude of the model
predictions. Using the previously described grouping approach
with respect to the model errors, a simple linear regression model
through the origin was constructed to predict the magnitude of the
model errors. Following the notation and general methodology of
McRoberts and Westfall (2014): (1) for the kth component model,
a joined list of ¢;,Y; and Y; was created and sorted in ascending
order with respect to, )71 where ¢ = \7,~ —Y;; (2) with the minimum
10 groups, as recommended by Hosmer and Lemeshow (1989), the
sorted triads of observations were grouped into groups of size 3,
with the last group including the remainder of the means; (3) for
every gth group, the mean observation Y, = ,}—gzgi ,Y,, the mean

. . < 1 ng <’
prediction Y,=;>*,Y, and the mean square error

ng
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Table 2

Model predictions and RMSE values for CRM ratios, CRM tree-level estimates and tree-level estimates for the regional equations, without measurement error. Total minus foliage,
the sum of the tree-level component estimates, is used as another means for comparison between the models. Tree-levels units are in kilograms of dry biomass.

Model means-without measurement error

Model RMSEs-without measurement error

Total tree (SUR) 284.83 Total tree (SUR) 73.78

Component CRM ratios CRM tree-level Regional tree-level Component CRM ratios CRM tree-level Regional tree-level
Bole 0.677 192.83 182.44 Bole 0.081 55.04 79.56

Bark 0.054 15.42 14.21 Bark 0.031 9.76 10.59

Branch 0.192 54.79 20.78 Branch 0.061 22.34 30.74

Foliage 0.080 22.69 NA Foliage 0.023 8.81 NA

Total minus foliage 263.04 217.43 Total minus foliage 87.14 120.89

03 =57 2_g18; were calculated, where ng is the number of trees
in the gth group; (4) the following model form was fit to the
grouped data for each component model using the method of ordi-

nary least squares
Gi=pr+Yi (15)

where 6; is the predicted model error for the ith tree, Bl is the

model parameter estimate and Y; is the model prediction for the
ith tree. It should be noted that with measurement error integrated

into the model errors, the value of 3; is expected to increase, reflect-
ing this additionally accounted for source of uncertainty.

A bootstrapping technique, in conjunction with Eq. (15), was
used to simulate the effects of model errors on the uncertainty of
per unit area estimates of component AGB for all models. A similar
Monte Carlo simulation sequence and notation described by
McRoberts and Westfall (2014) was used for each component
model.

First, the data set containing the “true” values of the 32 sample
trees was randomly sampled with replacement to produce a
bootstrapped-sample of size 32. Similar to the previously
described method of simulating measurement errors, contami-
nated model predictions for all 32 pseudo-sampled trees were pro-
duced by adding a randomly generated residual, & ~N(0, 6?), to the
prediction for the ith pseudo-sampled tree produced using the kth
component model, where 6; is estimated using Eq. (15). Using the
contaminated predictions and the pseudo sample data, a new
model, of the same form as the kth component model, was refit.
For Eqs. (1), (6)-(9) and (10), due to their original model form,
the contaminated predictions and the pseudo sample data required
transformation to the logio-logio and In-In scale, respectively,
prior to refitting.

Second, the refit equations were applied to the ground plot data
set. For the ith tree in the jth plot, predictions of tree-level compo-
nent AGB were produced by adding the model predictions to a ran-
domly generated constrained residual, i&; where &; is the randomly
generated residual ~N(0, 62), and 2 is a multiplicative constraining
factor that yields model efficiency values of 0.95. Model efficiency,
calculated as

QP =1- (7,12?16"2_ 2) (16)
Yl (Yi—Y)

where ny, is the number of trees in the ground plot data set, and Q?
is a goodness-of-fit statistic similar to the more familiar r* from the
ordinary least squares procedure, where the higher the value the
better the fit of the model to a given data set (Vanclay and
Skovsgaard, 1997; McRoberts and Westfall, 2014). This multiplica-
tive factor constraint was implemented in order to have a standard-
ized quality of fit of the model to the ground plot data for purposes
of comparing the standard errors of the mean for all component
models. Due to recent published findings illustrating the minimal

effect correlation among trees within plots has on the standard
error of the estimates, correlation among residuals was not inte-
grated into the analysis of this study (Berger et al, 2014;
Breidenbach et al., 2014; McRoberts and Westfall, 2014).

Third, to obtain the estimated per hectare values of component
AGB on the jth cluster plot, the summation of all subplot-level per
unit area component AGB predictions on the Ith subplot were cal-
culated as

Yi=>Y (17)
=1
with
n; )
Y, 2 Vil (18)

"~ SubplOt Areaecgres

where n; is the number of trees observed in the Ith subplot and Y;; is
the ith tree on the Ith subplot.

Fourth, for each simulation cycle the mean and variance of the
mean across all cluster plots were calculated as

_ 1

Yy=—Y3Y, (19)
nclJ 1

— 1 N —2

Var(Y) = (Y;-Y) (20)

where ng is the number of cluster plots (32 in this study).
Finally, the mean prediction and mean within-simulation vari-
ance over 5000 simulation cycles were calculated as

1 5000

,asim = ﬁ z]:? (21)

. 5000

Varsim = =555 > Var(Y) (22)
1

The mean predictions as well as final propagated error were
compared for all component models for both approaches. Metrics
used for comparison include RMSE, RRMSE, standard error of the
mean (SE) from Eq. (20) and relative SE (RSE).

3. Results and discussion
3.1. Model predictions and uncertainty

Once the predicted CRM component ratios were produced, they
were multiplied by the predicted total tree biomass obtained using
the SUR equation. When measurement error is not integrated into
the model errors, the CRM predicts comparable amounts of
tree-level AGB for each component, except for branches where
the CRM predicts over 2.5 times that of the currently used
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Table 3

Model predictions and RMSE values for CRM ratios, CRM tree-level estimates and tree-level estimates for the regional equations, with measurement error. Total minus foliage, the
sum of the tree-level component estimates, is used as another means for comparison between the models. Tree-levels units are in kilograms of dry biomass.

Model means-with measurement error

Model RMSEs-with measurement error

Total tree (SUR) 284.83 Total tree (SUR) 73.78

Component CRM ratios CRM tree-level Regional tree-level Component CRM ratios CRM tree-level Regional tree-level
Bole 0.607 172.92 338.50 Bole 0.324 157.07 573.95

Bark 0.044 12.40 14.13 Bark 0.057 16.62 49.99

Branch 0.207 58.93 20.67 Branch 0.079 27.22 72.87

Foliage 0.090 25.52 NA Foliage 0.040 13.07 NA

Total minus foliage 244.24 373.29 Total minus foliage 20091 696.80

Table 4

Model RRMSE values for CRM ratios, CRM tree-level estimates and tree-level estimates for the regional equations, with and without measurement error. Total minus foliage, the
sum of the tree-level component estimates, is used as another means for comparison between the models.

Model RRMSEs-without measurement error

Model RRMSEs-with measurement error

Total tree (SUR)  24.1%

Component CRM ratios (%)  CRM tree-level (%)  Regional tree-level (%) Component CRM ratios (%) CRM tree-level (%)  Regional tree-level (%)
Bole 12.0 28.5 43.6 Bole 53.4 77.5 169.6

Bark 57.7 63.3 74.5 Bark 131.6 155.7 353.9

Branch 31.5 40.8 147.9 Branch 38.2 62.4 352.6

Foliage 289 38.8 NA Foliage 44.2 68.3 NA

Total minus foliage 429 55.6 Total minus foliage 77.8 186.7

Standish et al. (1985) equations (Table 2). This difference could
likely be explained by differences between the geographic location
of the two study locations, as well as differences in the field proto-
col for sub-sampling branches. The Standish et al. (1985) equations
were fit from a dataset stemming from throughout the province of
British Columbia, Canada where a difference in growing season
duration and conditions may result in less branch AGB than in
the mid latitudes of lodgepole pines range, where the data in this
study are sourced. The sub-sampled branches selected in the
Standish et al. (1985) study were randomly selected from three
diameter classes, two from each class, whereas in this study
branches were randomly selected, independent of size, from three
different live crown height strata, with four from the bottom, three
from the middle and two from the top stratum, giving greater
weight to the portion of the crown where larger branches typically
occur. As a result of this difference in predicted branch AGB, the
predicted total tree AGB without foliage (TTWOF) when measure-
ment error is not accounted for is greater than that of the regional
equations. This result contrasts to the results found by Chojnacky
(2012) who found the aforementioned hybrid CRM approach to
yield predictions that were less than those from the current regio-
nal suite of equations for all but two genera. RMSE values for
tree-level component and TTWOF estimates were generally larger
for the regional models, with the RMSE for the regional bole and
branch component models being 53% and 41% higher, respectively,
than the CRM component model RMSEs. The TTWOF RMSE for the
regional estimate was also 45% higher than the CRM estimate.
With the integration of measurement error into the model
errors, this difference between TTWOF RMSE values was substan-
tially larger (Table 3). As expected, all RMSE values increased for
all tree-level component and TTWOF RMSE values, but the 621%
increase from 79.56 kg without measurement error to 573.95 kg
with measurement error for the regional bole component model
RMSE was dramatic. RRMSE values for all regional models showed
substantial increase as well (Table 4). This substantial imprecision
is most likely due to extrapolation, which occurred through the
random simulation of measurement errors. The measurement
error simulation procedure produced intermittently extreme

values of DBH and HT for inputs into the equation. Hence, this dra-
matic increase illustrates the model not being suitable for extrap-
olation outside the range of DBH and HT for which it was intended.
With the TTWOF RMSE value for the regional equations being
almost five times that of the CRM TTWOF RMSE value, the CRM
was the more precise approach for tree level estimation of AGB.
The model prediction for the regional bole component model also
increased a substantial 86% with simulated measurement error
integrated, resulting in a 72% increase for TTWOF. The CRM model
predictions for branch and foliage AGB increased slightly, while the
predictions for bole and bark AGB decreased with simulated mea-
surement error, resulting in a 7% decrease for TTWOF for the CRM
prediction.

3.2. Per unit area estimates and uncertainty

When only sampling error is considered for per unit area esti-
mation, the standard error of the means for the CRM were greater
in magnitude than those produced using the current regional equa-
tions (Table 5), showing a reversal in the trend observed with the
model RMSEs. As was the case with the tree-level predictions,
the bole and branch component models comprise the two greatest
portions of the TTWOF variability, with the CRM branch model pre-
cision being substantially less than the regional branch model. This
relatively large TTWOF RSE value can likely be attributed to two
reasons relating to the ground plot data. First, the ground plot data
were combined from different forest locations, with different spe-
cies compositions, stand densities and structure. Thus, the variabil-
ity between the 32 cluster plots was expectedly large. Second, the
small sample size of only 32 cluster plots could be contributing to
these large RSE values as well. Similar to the tree-level predictions
when measurement error was integrated, the CRM predictions for
all components and TTWOF were larger than those produced by
the regional equations.

When the model error was integrated into the simulations for
per unit area estimation, the precision of the current regional equa-
tion predictions was relatively unchanged; showing less than a 2%
increase in the SE for TTWOF, suggesting the model error of the
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Table 5

Per hectare estimates and SE values for CRM and regional equations, without accounting for measurement or model error. Total minus foliage, the sum of the per hectare
component estimates, is used as another means for comparison between the models. Tree-levels units are in kilograms of dry biomass per hectare.

Sampling error only

Mean SE

Component CRM plot-level Regional plot-level Component CRM plot-level Regional plot-level
Bole 24690.09 17875.77 Bole 4373.71 3383.30

Bark 1862.87 1578.96 Bark 33047 284.07

Branch 6489.43 2497.86 Branch 1130.67 436.49

Foliage 2603.83 NA Foliage 438.48 NA

Total minus foliage 33042.39 21952.59 Total minus foliage 5834.85 4103.86

Table 6

Per hectare estimates and SE values for CRM and regional equations, accounting only for model error and for both measurement and model error. Total minus foliage, the sum of
the per hectare component estimates, is used as another means for comparison between the models. Tree-levels units are in kilograms of dry biomass per hectare.

Mean SE

Component CRM plot-level Regional plot-level Component CRM plot-level Regional plot-level
Sampling error (with model error)

Bole 32768.33 16940.20 Bole 11649.73 3341.45
Bark 3253.51 1602.48 Bark 1253.84 295.64
Branch 9896.37 2971.86 Branch 3130.85 548.02
Foliage 3109.95 NA Foliage 742.51 NA
Total minus foliage 45918.20 21514.55 Total minus foliage 16034.43 4185.12
Sampling error (with model and measurement error)

Bole 33287.96 16701.94 Bole 12245.38 3566.87
Bark 6673.57 1600.91 Bark 2893.22 296.29
Branch 10227.99 2968.04 Branch 3335.24 547.98
Foliage 3272.53 NA Foliage 803.54 NA
Total minus foliage 50189.53 21270.89 Total minus foliage 18473.84 4411.13

Table 7

RSE values for CRM and regional equations, for all three scenarios depicted in the previous three tables. Total minus foliage, the sum of the per hectare component estimates, is

used as another means for comparison between the models.

Component Sampling error (RSEs)
Sampling only Model errors Measurement and model errors
CRM plot-level (%)  Regional plot-level (%)  CRM plot-level (%)  Regional plot-level (%)  CRM plot-level (%)  Regional plot-level (%)
Bole 17.7 18.9 35.6 19.7 36.8 214
Bark 17.7 18.0 38.5 184 434 18.5
Branch 17.4 17.5 31.6 18.4 32.6 185
Foliage 16.8 NA 23.9 NA 24.6 NA
Total minus foliage 18.5 18.7 349 19.5 36.8 20.7

regional models are trivial contributors to the total uncertainty
(Table 6). This is in line with the results of several authors who
have looked at the effects of model uncertainty on per unit area
estimates of forestry parameters (Berger et al, 2014,
Breidenbach et al.,, 2014; McRoberts and Westfall, 2014; Stahl
et al., 2014). With the relatively small sample size of only 32 trees,
this small increase in uncertainty could partially be attributed to
the Q% =0.95 constraint for establishing a baseline of comparison
between the two sets of equations. However, we anticipate the
SE values would only marginally increase without this constraint,
as shown by McRoberts and Westfall (2014).

The precision of the CRM predictions, however, showed a sub-
stantial change with integration of model errors, with the SE for
TTWOF increasing nearly threefold. With the CRM approach, where
two estimates with their own amounts of uncertainty are multi-
plied together, the resulting estimate of total component AGB is
hierarchical in nature; with the residuals of the total tree and com-
ponent ratio equations being serially correlated. When this degree
of serial correlation is present between the residuals of two hierar-
chical responses, predictions themselves will be unbiased and

consistent, but will also be highly inefficient with the uncertainty
estimates being enlarged (Kutner et al., 2004, p.481). Thus, as sug-
gested by the results of the simulations in this study, the effect of
applying both CRM estimates to plot data and multiplying the
resultant estimates together, without accounting for the correla-
tion structure between these two models, can produce per unit
area estimates with a low degree of reliability. Future
inventory-based efforts will be able to incorporate field-based
measurements from FIA plots of errors in measurement of tree
and other attributes (Pollard et al., 2006).

The effect of accounting for measurement error in addition to
model and sampling error was seen in an increase in the SE and
RSE values for both sets of equations (Tables 6 and 7). The
TTWOF SE for the CRM and regional equations increased by 15%
and 5%, respectively. The relative proportions of SE due to mea-
surement, model and sampling error for the regional equations
were 5%, 2% and 93%, respectively. Gertner (1990) found similar
results for proportion of total variance while looking at the effect
of all three sources of error while estimating stand-level volume
per acre. The same relative proportions of SE for the CRM equations
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were 13%, 55% and 32%, for measurement, model and sampling
error, respectively. The relative proportion of the SE due to mea-
surement error being as large as it is (13%) indicates the measure-
ment error also contributed fairly heavily to the total per unit area
uncertainty for the CRM estimates.

With a relatively small dataset of only 32 lodgepole pine trees
that were subjectively selected, rather than probabilistically, from
a fairly limited portion of the species’ range, the predictions and
their respective uncertainties reported in this study likely have
some amount of bias. However, despite these admitted inferential
limits, a clear depiction of the general contributions of measure-
ment, model and sampling error to the total propagated error
was given for both models.

4. Conclusion

As defensibly precise estimates of AGB across a range of scales
are increasingly sought after by FIA and others users of
individual-tree biomass equations, the need to produce reliable
depictions of their associated uncertainty will continue to develop.
This study has confirmed that not accounting for both measure-
ment and model error does in fact result in an underestimation
of per unit area uncertainty of AGB. Due to the substantial contri-
bution of the models errors with the CRM equations, the per unit
area estimates produced with those equations were much less pre-
cise than the current regional equations. With an increased sample
size, issues with precision may be mitigated. However, these issues
likely stem predominantly from the equation forms selected;
specifically the new CRM approach described here.

Ultimately, if FIA were to implement the usage of these CRM
equations for lodgepole pine in the Pacific Northwest region,
accounting for the uncertainty of the combined equations should
accompany this implementation. This would result in reliability
statements with increased credibility. While the predicted means
from the CRM equations could theoretically yield more accurate
estimates when applied to different stands of lodgepole pine, the
results of this study suggest those estimates would be less precise
than those that would be produced by the current regional equa-
tions. The results of this study also provide an impetus for future
research to depict the anticipated reduction in uncertainty associ-
ated with accounting for the aforementioned correlation structure.
Further, given these results it is reasonable to assume the precision
of the estimates produced by the CRM-FIA approach are substan-
tially underestimated. While the issue of consistency with the cur-
rent regional models is still prevalent, the comparatively greater
reliability of their estimates of AGB on a per unit area basis, using
the trees in this study, dissuades their replacement for small to
midscale usage by the CRM equations evaluated here.
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