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Analysis of spatial correlation in predictive models of forest
variables that use LiDAR auxiliary information

F. Mauro, V.J. Monleon, H. Temesgen, and L.A. Ruiz

Abstract: Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To
estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be
prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined
(i) the spatial correlation patterns of residuals from LiDAR linear models developed to predict volume, total and stem biomass per
hectare, quadratic mean diameter (QMD), basal area, mean and dominant height, and stand density and (ii) the impact of field
plot size on the spatial correlation patterns in a standwise managed Mediterranean forest in central Spain. For all variables, the
correlation range of model residuals consistently increased with plot radius and was always below 60 m except for stand density,
where it reached 85 m. Except for QMD, correlation ranges of model residuals were between 1.06 and 8.16 times shorter than
those observed for the raw variables. Based on the relatively short correlation ranges observed when the LiDAR metrics were
used as predictors, the assumption of independent errors in many forest management inventories seems to be reasonable and
appropriate in practice.
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Résumé : La prise en compte de la corrélation spatiale des erreurs des modeles LiDAR peut améliorer la précision des estimateurs
basés sur des modeles. Pour estimer la corrélation spatiale, des plans d’échantillonnage qui fournissent des observations étroites
sont nécessaires, mais leur mise en ceuvre pourrait étre extrémement cotiteuse. Pour quantifier les gains obtenus en tenant
compte de la corrélation spatiale des erreurs de modele, nous avons examiné (i) les profils de corrélation spatiale des résidus des
modeles linéaires LiDAR développés pour prédire le volume, la biomasse totale et la biomasse des tiges a ’hectare, le diametre
moyen quadratique (DMQ), la surface terriere, les hauteurs moyenne et dominante et la densité du peuplement et (ii) I’effet de
la taille de la parcelle établie sur le terrain sur les modéles de corrélation spatiale dans une forét méditerranéenne gérée par
peuplements du centre de I’Espagne. Pour toutes les variables, I’étendue de la corrélation des résidus des modeéles augmentait
systématiquement avec le rayon de la parcelle et était toujours en dessous de 60 m, sauf pour la densité du peuplement, ou elle
a atteint 85 m. A I’exception du DMQ, I’étendue de la corrélation des résidus des modeéles était de 1,06 a 8,16 fois plus étroite que
celle qui a été observée pour les variables brutes. Sur la base des intervalles de corrélation relativement étroits observés lorsque
les parameétres LiDAR ont été utilisés comme prédicteurs, I’hypothése que les erreurs sont indépendantes associée a de nom-
breux inventaires d’aménagement forestier semble raisonnable et appropriée dans la pratique. [Traduit par la Rédaction]

Mots-clés : corrélation spatiale, LiDAR, inventaire forestier, modéles linéaires, modéles spatiaux.

est on each grid cell. The ABA in combination with model-based
estimation methods has had a prominent role in LiDAR-assisted
forest inventories and will be the focus of our study.

The spatial correlation of model errors has been frequently
ignored in operational forest inventories assisted with remotely
sensed auxiliary information, thus assuming that model errors
are independent. However, assuming independence may result in
loss of predictive power and incorrect variance estimators. For a
spatial linear model, best linear unbiased prediction (BLUP, or
kriging in the geostatistical literature) incorporates the spatial

1. Introduction

The use of remotely sensed auxiliary information from airborne
laser scanners (ALS), in combination with the area-based approach
(ABA), has been an active area of research during the last two
decades (Naesset 1997; Magnussen et al. 1999; Nasset and Bjerknes
2001; Andersen et al. 2005; Gonzdlez-Ferreiro et al. 2012) and has
been implemented in operational forest inventories for more
than a decade (Nzsset 2002). Under the ABA, the study area is
covered by a grid (i.e., a compact tessellation with non-overlapping
units) containing auxiliary information for each grid cell. These

grid cells are the population elements or units, so that the grid
implicitly defines a pseudo sampling frame. The variables of in-
terest and the auxiliary variables are measured in a sample of field
plots and the relationship between those sets of variables is mod-
eled. Finally, the models are used to predict the variables of inter-

correlation to minimize the mean squared error of the prediction
for unsampled locations and block averages (Cressie 1993b, pp. 119—
167). The improvement of the prediction depends on the strength
of the spatial correlation and is greatest for the grid cells closest to
the observed plots and negligible for grid cells located beyond the
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spatial correlation range. Assuming independence when the er-
rors are actually correlated may result in unrealistic and typically
low estimators of uncertainty (Breidenbach et al. 2016). For these
reasons, there has been an increasing interest on studying the
impact of the spatial correlation and how it can be incorporated
into forests inventories assisted with spatially explicit auxiliary
information (McRoberts 2006; McRoberts et al. 2007; Breidenbach
et al. 2008; Magnussen et al. 2009, 2016a, 2016b; Ver Hoef and
Temesgen 2013; Temesgen and Ver Hoef 2015; Finley et al. 2014).

To detect and model the spatial correlation of model errors, the
sampling design needs to ensure the existence of pairs of obser-
vations at distances where this correlation is still present. Some
studies found that the observed range of the spatial correlation of
model residuals was larger than the minimum distance between
plots, reaching distances of several kilometres (Magnussen et al.
2009; Ver Hoef and Temesgen 2013; Finley et al. 2014). However, in
forest inventory applications, especially when using LiDAR or
photogrammetric point clouds, it seems to be more common to
observe residual spatial correlation that vanishes at distances
from 10 to 200 m (Breidenbach et al. 2008, 2016; Finley et al. 2014).
These distances are typically shorter than the minimum separa-
tion between field observations (e.g., Woods et al. 2011; Rahlf et al.
2014; Mauro et al. 2016). Plots at close distance are also needed
because the shape of the semivariogram at short distances is of
the greatest importance for spatial prediction (Cressie 1993b,
p- 134). The need for observations of the spatial correlation at
short distance and the potentially short range of such correlation
raise important questions about the design of survey protocols.
Zimmerman (2006) found that sampling designs that use plots
uniformly distributed throughout the study area are optimal for
spatial prediction in unsampled locations when the spatial corre-
lation parameters are known, while clustered plots are best suited
for estimating the spatial correlation parameters. In practice, both
spatial correlation parameters are not known and predictions at un-
sampled locations are needed. For this case, Zimmerman (2006)
found that the best designs are those in which clusters of nearby
sample plots are uniformly distributed throughout the study area.

Insights about the potential importance of the spatial correla-
tion of model errors could be obtained from previous studies in
which kriging was applied to raw forest variables, without models
incorporating auxiliary information (e.g., Gunnarsson et al. 1998).
Based on the spatial nature of LiDAR metrics, the range of the
spatial correlation should be shorter for the model residuals than
for the raw variables of interest, so information from previous
studies might be considered as an upper bound for the correlation
range of model residuals. However, the most desirable approach
to studing spatial correlation is to rely on field plots close enough
to directly estimate it, which may require special sampling de-
signs.

An additional consideration when studying spatial correlation
derives from the fact that field plots and grid cells are not point
units, but area units. The spatial correlation has always been esti-
mated assuming that the distance between units is the distance
between their centroids (Breidenbach et al. 2008; Magnussen et al.
2009, 20164, 2016b; Finley et al. 2014). An inherent consequence of
having a support area is that, as the distance between units de-
creases, the support areas of field plots and population grid cells
can partially overlap (Fig. 1). While this would not be an issue if the
population is partitioned into a grid of non-overlapping units
(grid cells) and a sample taken from those units, the reality of
LiDAR-supported ABA inventory is that the population grid and
the field plot sample are misaligned for multiple reasons (i.e.,
positioning errors or when separation between plots is not a mul-
tiple of the grid cell size) and, therefore, field plots and grid cells
partially overlap (Fig. 1). Plot overlap induces correlation, because
overlapping area is measured by both plots. However, estimation
of the empirical autocorrelation function is the same whether
there is overlap or not, simply because this is the correlation
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Fig. 1. Field plot and grid of pixels. Note the partial overlap between
the field plot and the four pixels around its center. [Colour online.]

Legend

® Plot center [__] Field plot

between a variable measured in two plots at a given distance
between their centers, regardless of its cause. Once this empirical
function is estimated, models may account for differences between
overlapping and non-overlapping portions of the autocorrelation
function, if warranted by the data. Because of misalignment, par-
tial overlap between the grid that partitions the population and
the field plots is a reality, so knowing the correlation at distances
where the overlap is still present would help to improve the pre-
diction for grid cells that share area with the field plots.

Field plot size has important consequences for both fieldwork
cost and the ABA workflow and may also influence the spatial
correlation. Larger plots usually contain more trees and thus re-
quire more measurements, which may increase the costs. How-
ever, larger plots may be less sensitive to positioning errors
(Gobakken and Nesset 2009); they have less edge relative to plot
area and may result in greater precision, as the variance of the
estimators is smaller in larger plots (Ruiz et al. 2014). Plot size may
also affect the estimates of spatial correlation and inform the
need to account for the spatial correlation of model residuals.
However, to the best of our knowledge, no study has analyzed
such interaction in a LiDAR-assisted inventory context.

Estimation of the spatial correlation is the first and most diffi-
cult step for both spatial prediction and estimating its root mean
squared error (RMSE) and is the focus of this study. Once the
spatial correlation function is estimated, it can be incorporated
into the standard equations for spatial prediction (i.e., kriging)
and variance and RMSE estimations (Cressie 1993b, pp. 119-167,
and Searle et al. 1992, p. 272). Due to the difficulty of obtaining
appropriate data, studies that examine the spatial correlation of
residuals for models that use LiDAR or photogrammetric point
clouds as auxiliary information are limited (Breidenbach et al.
2008, 2016; Finley et al. 2014; Rahlf et al. 2014). The number of
variables analyzed in the literature is also very small, limited to
volume and stand table data, and no previous study has consid-
ered variables such as dominant height, biomass, stand density,
or basal area. Thus, the objectives of this study are to

1. examine the spatial correlation of residuals of predictive mod-
els that use LiDAR as auxiliary information and to compare the
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range of the residuals with the spatial correlation ranges for
the raw variables of interest; we focus on analyzing the spatial
correlation at short distances, which are the most relevant for
spatial prediction;

2. examine the interaction between plot size and spatial correlation.

We examined a set of variables that can be considered as a repre-
sentative sample of the types of variables used in forest management
inventories. The variables examined are volume (V, m3-ha™), total
biomass (B, kg-ha™), stem biomass (B, kg-ha™), quadratic
mean diameter (QMD, cm), basal area (G, m2-ha™!), mean tree
height (H,,, m), dominant height (H,, m), and stand density
(N, stems-ha~"). With the exception of volume, the spatial correla-
tion of model errors for these variables has not been previously
examined. Plot radii ranged from 7.5 m to 12.5 m.

2. Material and methods

2.1. Study area and areas of interest (AOI) hierarchy

The study area is a 4000 ha forest located in “La Serrania de
Cuenca,” central Spain, described in Ruiz et al. (2014). Approxi-
mately 5% of the area is not forested (less than 10% canopy cover;
Food and Agriculture Organization of the United Nations (FAO)
2012). European black pine (Pinus nigra Arn.) and Scots pine (Pinus
sylvestris L.) are the main species and appear mixed in different
proportions. Other conifers such as Spanish juniper (Juniperus
thurifera L.) and maritime pine (Pinus pinaster Ait.) and hardwoods
such as holm oak (Quercus ilex L.) and Portuguese oak (Quercus
faginea. Lam) appear scattered over the study area. Slopes are
steep, and the configuration of the hydrological network, with a
main river crossing the study area from north to south and several
seasonal tributaries running east or west to join the main stream,
results in a patch of areas with clearly differentiated slopes and
orientations.

The study area is a forest that is managed at the stand level
using shelterwood methods with a 120-year rotation period and a
20-year regeneration period. The study area contains a total of
55 delineated stands, ranging in area from 28.3 ha to 75.9 ha,
which were grouped based on their similarity into 13 manage-
ment units (MU) subject to similar treatments. The area of the MUs
ranges from 30.6 ha to 392.3 ha.

2.2. LiDAR data

LiDAR data were collected in November 2008 using an Optech
ALTM-1225 operating at 25 kHz and a maximum scanning angle
of +18°. The average LiDAR point density was 114 points-m=2. Point
density was not homogeneous due to irregular overlap of the
scanning stripes, so the LiDAR point cloud was thinned to an
homogeneous density of 4 points-m~2 using the software LAStools
(Isenburg 2013). Ground points were filtered from the LiDAR point
cloud and used to obtain a digital terrain model of 0.5 x 0.5 m grid
cell size, which was used to normalize the LiDAR point cloud. A
visual inspection of the DTM and of the normalized point cloud
ensured that these products were free of spikes and outliers. All of
these processes were performed using FUSION (McGaughey 2014).

2.3. Field data collection

A total of eighty-five 25 m radius field plots were measured in
December 2008. The radius of the plots used in LiDAR-based forest
inventories typically ranged from 9 m to 12.5 m (Ruiz et al. 2014),
so the area of the plots in this study was 4 to 7.72 times larger than
that of commonly used field plots. Plots were located on the nodes
of a 500 m regular grid. Field crews navigated to the preselected
plot centers using a navigation-grade global positioning system
(GPS) using C/A code. The coordinates of each tree with diameter
at breast height (DBH) larger than 7 cm were obtained using com-
pass and measuring tape. Based on previous experience, the ex-
pected accuracy of the positioning of trees relative to the plot
center was approximately 0.5 m. For each tree, DBH was measured

Can. ]. For. Res. Vol. 47, 2017

using a caliper, and height (H) was measured using a Hagolf
Vertex III hypsometer. Tree volume was computed using species-
specific regional equations developed by the Spanish National Forest
Inventory (NFI) using DBH and H as predictors. Total tree and stem
biomass were computed using species-specific models developed by
Montero et al. (2005) using DBH as the only predictor.

Positioning errors of navigation-grade GPS devices can frequently
exceed 5 m and should be corrected to ensure a precise co-
registration with the LiDAR data. For each plot, trees were first posi-
tioned using their coordinates relative to the plot center and overlaid
on the orthophoto and on the LiDAR point cloud resulting from the
filtering of the ground points. Then, an experienced photo inter-
preter manually adjusted the location of the plot, relying on the
identification of at least seven different trees in the digital canopy
height model (DCMH), the orthophoto of the study area, and the
ground point cloud. Tree stem locations were identified as maxima
in the DCHM and gaps in the ground point cloud derived from Li-
DAR. All trees in a plot were manually translated and rotated as a
block until most isolated and easy to identify trees overlapped with
the stem locations identified from the LiDAR image. Some trees were
moved independently in each plot when their position was identi-
fied on the ground point cloud and on the orthophoto. These trees
were less than 0.5% of the total. The average displacement of the plot
center was 1.13 m, the standard deviation of the displacement was
1.72 m, and the maximum displacement was 9.14 m.

2.4. Model fitting and spatial correlation assessment

For each variable of interest, we fit linear spatial models in
which the mean of the distribution was a function of LiDAR met-
rics (i.e., percentiles, moments, means, minima, and maxima of
LiDAR elevations, as well as cover parameters such as percentages
of returns above different height thresholds; McGaughey 2014).
We assessed the residuals to determine whether the variance was
constant; if not, we modelled it as function of one of the LiDAR
predictors. The general model fitting strategy consisted on start-
ing with simple models and adding complexity if needed. First, we
selected the LiDAR metrics to include in the model, then consid-
ered a weighting schema to account for heteroscedasticity, added
a random effect for the management unit, and, finally, modeled
the residual spatial autocorrelation as a function of the distance
between subplot centers.

2.4.1. Computation of subplot-level values and auxiliary
information

For each 25 m radius plot, groups of subplots of radii between
7.5 and 12.5 m in 0.5 m increments contained within the larger
plot were created. Each group of subplots was obtained by first
defining a subplot concentric to the 25 m radius plot. New sub-
plots were defined by moving outwards the central subplot in
steps of 0.5 m following east-west, southeast-northwest, south—
north, and southwest-northeast directions until the edges of the
subplots were at a tangent to the border of the 25 m radius plot.
The number of subplots in each 25 m plot, the total number of
subplots, and the maximum distances between subplot centers
are shown in Table 1. Note that the number of steps and the
maximum distance between subplot centers (max_distance(radius))
is different for each radius (Table 1) and equals 50 m minus two
times the subplot radius. For each subplot, the variables of inter-
est were calculated and expanded to a per hectare basis when
appropriate. Similarly, the full set of 30 LiDAR metrics were com-
puted for each subplot using FUSION (McGaughey 2014).

2.4.2. Nonspatial models

First, we fitted linear fixed effects models of the variables of
interest as a function of the LiDAR metrics. Because of the very
large number of potential predictor variables, we selected parsi-
monious models by first choosing the fixed effects using the R
package leaps (Lumley 2009) based on the 12.5 m radius subplot
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Table 1. Number of subplots in each 25 m plot, maximum distance between subplot
centers (max_distance), and number of pairs of observations at 0.5 m and at max_distance
used to estimate the spatial correlation parameters.

No. of pairs

of observations
Subplot No. of subplots Total no. of max_distance at at
radius per 25 m plot subplots (m) 0.5m max_distance
7.5 284 24 140 35 23 800
8 276 23 460 34 23120
8.5 268 22780 33 22 440
9 260 22100 32 21760
9.5 252 21420 31 21080
10 244 20 740 30 20 400 340
10.5 236 20 060 29 19 720
11 228 19 380 28 19 040
11.5 220 18 700 27 18 360
12 212 18 020 26 17 680
12.5 204 17 340 25 17 000

only. The maximum number of predictors was set to three inde-
pendent variables per model. We obtained the best five models in
terms of adjusted coefficient of determination when considering
one, two, and three auxiliary variables for a total of 15 models for
each variable of interest. These models were denoted as m y.p11,
where vrbl is a sub-index to denote the variable of interest and
subscript1(l =1, 2, ..., 15) indicates the candidate model.

Typically, the variance of the model residuals was not constant,
so we fit a new set of 15 models, m, .4, ;, accounting for heterosce-
dasticity using the R package nlme (Pinheiro et al. 2015). For each
of the 15 models selected previously, the standard deviation of the
errors was assumed to be proportional to a power of the predictor
most correlated with the variable of interest, mcp”. The errors
for grid cell j in management unit i (e;) can then be written as
e; = 0,,mCp/e;, where ; is the standardized error, distributed as
€; ~ N(0,1), so that V(el-j)1é = g,,mcp};;, and nis a model parameter.
Models m, ;.11 and m, .4, ; can both be written as

(1) Vi = Bxij + ey

where y; and x; are the variable of interest and the vector of
auxiliary variables for grid cell j in management unit i, respec-
tively, and  is a vector of parameters. The model error is e;, with
variance V(e;) = a5, for mg ., and Viey) = Uﬁemcpf‘;"j for my 1,
Note that the model my 4, ; is nested within m, ,,;; when 1 = 0.
Thus, we compared these two models using a likelihood ratio test
and selected the simplest model, my, 1, ; when including the het-
eroscedasticity did not improve the model fit significantly, and
My vrp1; Otherwise (Pinheiro and Bates 2000, p. 84).

We added a management unit random effect to the best models
selected in the previous step, resulting in the following model:

(2) Vi = Bxij + v+ ey

Here v; is the random effect of management unit i, which is as-
sumed to be independent and identically distributed variables
with mean 0 and variance V(v,) = 0'5. These models were denoted
as m, 4, and both mg 4, and my 4, ; are nested within my,
when o? = 0. Therefore, the significance of this random effect was
tested using a likelihood ratio test (Pinheiro and Bates 2000, p. 84).
Selected models were denoted by my,, ;. Both Pearson’s standard-
ized residuals and the management unit random effects were
graphically assessed and the best behaved candidate model, in
terms of normality and heteroscedasticity, was selected and de-
noted by myy;.

Finally, for the other subplot radii, we kept constant the fixed
effects selected for the 12.5 m radius plot model, m;;,, but tested
for the need to account for heteroscedasticity and MU random
effects as described above. The resulting models were denoted as
Myt raq- Where the sub-index “rad” indexes the subplot radius.
2.4.3. Spatial correlation assessment

To analyze the spatial correlation, we computed the Pearson
correlation of the standardized Pearson residuals (éij) from the
final model, myy, .4 for all pairs of subplots separated at dis-
tance d between 0.5 m and max_distance(radius), in 0.5 m inter-
vals, but using only pairs of observations on the same moving line
(dashed lines in Fig. 2). We computed the correlation of the resid-
uals for each subplot radius, distance, and variable of interest,
which yields a directional empirical correlation function. Then,
all the pairs were pooled together to compute an isotropic empir-
ical correlation function (i.e., the correlogram; Cressie 1993a,
p- 67). Empirical correlations at distance d are denoted hereafter
as ) raq(d), with subscripts as described in the previous section.
We examined the correlation as a function of distance between
subplot centers to select a suitable spatial correlation model for
each variable of interest.

The covariance of the model errors for locations b and ¢ within
the same MU was expressed as Cov(e,, e.) = 03,0.G(dy, .. p, 6), where
03, and o, are the standard deviations of the model errors for the
subplots centered at locations b and c, respectively; G(d, ., p, 6)
(eq. 3) is the correlation function; d, . is the Euclidean distance
between those locations; and p and 6 are parameters. We modeled
the correlation function as

B db'c )} 2
3) G(dy. p. ) = 6I(d,, < 2rad){[arccos<—2ra p

dy,c
d 4, -=
- (mZ;Z rad®* — }Z )} +(1— 6e <p)

Note that Cov(e,, e ) is a function of the location, because o}, and o,
may depend on mcp, which can change from point to point. On
the other hand, G(d, ., p, 0) is the covariance, as well as the corre-
lation function for the standardized errors ;. The distribution of
the standardized errors is stationary (Cressie 1993a, p. 57), with
mean 0 and variance 1, and the correlation only depends on the
distance between plot centers. Then, modeling G(d,, ., p, 6) is func-
tionally equivalent to modeling the semivariogram for the stan-
dardized residuals (Cressie 1993a, p. 67).
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Fig. 2. Example of 25 m radius plot and subplots of radii 7.5 m,

10 m, and 12.5 m (for clarity, other subplots radii are omitted)
moving in east to west, south east to northwest, south to north, and
southwest to northeast directions. Field plots were moved in 0.5 m
steps and are marked with dashed lines. Trees are plotted according
to their crown radius. [Colour online.]

450 stéps

(-.
0.5 m steps

25 m radius plots Subplots of radius: Trees

[ J125m
] [ ]1iom ]

[ ]75m

The shape of the model for G(d,, ., p, 6) was chosen after observ-
ing the empirical correlation function. It is a mixture of two com-
ponents: the first component accounts for the correlation when
there is overlap between subplots (i.e., when the distance between
subplot centers is less than twice their radius) and the second
component is a pure exponential model without nugget effect.
I(d, . < 2rad) is an indicator function of whether or not there is
overlap, and 6 is the weight for the first component. The effective
or practical range, denoted as ¢ hereafter, is defined as the dis-
tance for which the correlation descends to 0.05 (Bivand et al.
2008, p. 202) and is a function of p and 6 and the plot radius.

Due to the spatial nature of LiDAR metrics and their high
explanatory power, one can expect a reduction of the spatial cor-
relation of model errors when compared with the spatial correla-
tion of the raw variables. To assess this reduction, we examined
the spatial correlation of the raw variables and compared it with
the spatial correlation of the residuals. As with the residuals, we
modeled the spatial correlation patterns for the response vari-
ables using the correlation function in eq. 3. For each variable of
interest and subplot radius empirical correlations, the covariance
function, the correlation function, its parameters, and the effec-
tive range (w(d), Cov(d, . p, 0), G(d, . p, 0), p, 0, ¢) were indexed
using sub-indexes vrbl and rad to denote the variable of interest
and the subplot radius. A superscript “res” or “raw” was added to
indicate model residuals or raw variables, respectively. We com-
puted the ratios of the effective empirical correlation ranges of
the residuals and raw variables

raw

aw,res __ Pyrbl,rad
vrblrad ~ g
(Pvrbl,rad

to summarize the reduction of the range of the spatial correlation
when the auxiliary information is used to predict the response
variable.

Can. ]. For. Res. Vol. 47, 2017

2.4.4. Influence of plot size in the spatial correlation of the
residuals

To analyze how plot size interacts with the spatial correlation of
the residuals and raw variables, we first computed the correlation
coefficients between the range of the spatial correlation and the
plot radius. Then, we conducted a more detailed analysis by di-
rectly examining the observed empirical correlations instead of
the parameters of the spatial correlation model. In this analysis,
we also excluded the distances for which there was subplot over-
lap. For each variable and subplot distance between 20 and 30 m,
we tested the effect of increasing the plot radius on the empirical
correlation of model residuals using Kendall’s 7 test (Dalgaard
2008, p. 124).

3. Results and discussion

The exploratory analysis revealed that empirical correlation of
model residuals decreased with distance between subplot centers
without marked differences among directions, so that the isotro-
pic models without nugget effect (i.e., eq. 1) were appropriate
(Fig. 3) and can be used to derive kriging estimates, as well as
mean square error estimators (Searle et al. 1992, ch. 7; Cressie
1993b, pp. 119-167). For basal area and subplot radii of 7.5, 8.5, 9,
and 9.5 m and for tree density and subplot radii of 9.5, 10, and
10.5 m, the right tail of the empirical correlation function for the
residuals was particularly flat. This led to models with a very large
p parameter for the exponential component and, therefore, unre-
alistically large values of the estimated effective ranges. This ef-
fect was especially marked for basal area, where the computed
ranges for those subplot radii were orders of magnitude longer
than those observed for the radii of the remaining subplots for the
same variables or for other variables. Those seven cases were re-
moved from the analysis of the spatial correlation vs. plot radius.

For all of the raw variables, the effective spatial correlation
range estimated from the eq. 3 model was always less than 200 m
(Fig. 4). For the residuals, the effective range was always below
60 m, with the exception of tree density and the seven cases
discussed in the previous paragraph. QMD had the shortest range
among the raw variables, and in addition, the LiDAR variables did
not explain much of its variability. As a result, when the LiDAR
variables were included, the spatial correlation range of the resid-
uals increased slightly and gy g Was close to but less than one.
Tree density, which typically shows the weakest relationship with
LiDAR auxiliary information (Neesset 2002; Goerndt et al. 2010),
had the longest correlation range for model residuals, and the
ratio yypq = ranged from 1.06 to 3.45. After QMD, the variables
with the shortest correlation ranges were volume, dominant
height, and mean tree height, while the remaining variables (B,
Bgiem» and G) showed correlation ranges for the residuals that were
larger than those observed for QMD, H,,, H,, and V but smaller
than those observed for N. The high predictive power of LiDAR
data for dominant height (Neasset 1997; Magnussen et al. 1999;
Naesset and @kland 2002; Nesset and Bjerknes 2001; Goerndt et al.
2010) explains why the spatial correlation range of the residuals
was 3.14 to 5.14 times shorter than that observed for the raw
variable (v} 1aq’) and became even shorter than the spatial corre-
lation range0 of the residuals of mean height (Fig. 4). For volume,
the values of »j1.7* were similar to or greater than those for
dominant height and considerable larger than those for B, and
Bgtem (Fig. 4 and Appendix Table Al). This could be explained by
the strong relationship between LiDAR metrics with tree height, a
variable that was included in the tree volume equations but not in
the biomass equations. For the biomass variables and basal area,
the reduction of the spatial correlation range when the LiDAR
auxiliary information was included was larger than that observed
for QMD but smaller than that observed for H, and V. B, Bgtem»
and G are all related in different ways to N and tree height, which
may explain this average behavior.

< Published by NRC Research Press



Mauro et al. 793

Radius | Radius | Radius | Radius | Radius | Radius | Radius | Radius | Radius | Radius | Radius

9.5m 10 m 10.5m 11m 115 m 12m 12.56m

]
)
3

NS

©®
)
3

10

=
—

30

Hm

-

Modeled correlation - - Raw variable

NS
N
=~
=~~~
SSSSSSS
SSSSSSNIS
SSSSSSEITS

Distance (m)

Raw variable

30

-

Fig. 3. Spatial correlation models for the residuals from m,, .4 and for the raw variables.

B

ESSRRRS|SSRAARE |\ SSASEE
SIS
= .
| S
IS

Correlation of residuals from the selected models for different variables and subplots of different radius

a Lo
o - (<2}
2
L -
> |2 RN 3§ L L---F
&
5 7 / i 4 F2
>/ 7 7 7 7 4 4
b 7 7 7

Fo
T T T : 5 T T T T T T T T T T T T T T T T T
-~ 10 O 10 O I O I0 Ov I O I0 Ov I O 0 Ov I O« I O+« 19 O

IS o o o IS o o o IS IS IS
uone|aLI0)

< Published by NRC Research Press

*AJuo asn euossed Jo4
/T/70/0T Uo AISIBAIUN 31R1S U0BaIO AQ W0D'SSa.dU02859 10U MMM WD) papeo UMOQ 'Say “lo4 T "ued



Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Oregon State University on 10/04/17
For personal use only.

794

Can. ]. For. Res. Vol. 47, 2017

raw,res

Fig. 4. Distances (¢) for which correlation between pairs of observations decreases to 0.05 and parameters .y aq-

O Dependent variable B Residuals ‘r,z\:’”:; O Dependent variable B Residuals “{\r,z\',v”rr::
0 2 4 6 8 10 0 2 4 6 8 10
1 | o | i |

ro) . J—

— 1 | H [ ]
" v [Eom——] m L
£ o [ |
5 S | |
2 o correlation(@;ay, radius)=0.93 %l correlation(@,ay, radius)=0.55 %
g ] p-value=0.00 [— p-value=0.08 =
o6 correlation(@yes, radius)=0.62 I | correlation(Pres, radius)=0.99 ||

~ p-value=0.04 (o] p-value=0.00 | EEsSae——

. | ——-] . | E——"]

- Buot | Ho |
E o = —
EE ; ; = ; : [—]
2 o correlation(,ay, radius)=0.93 [— correlation(¢,ay, radius)=0.85 [E—
8 1 p-value=0.00 = p-value=0.00 [ —
o6 correlation(@res, radius)=0.85 | correlation(@res, radius)=0.94 |

N p-value=0.00 | p-value=0.00 | |

1 | |

o J—— — |
=3 ) Bstem (] QMD |
S () O
g * — -
=] correlation(@yaw, radius)=0.93 ] correlation(@yaw, radius)=0.96 0
S e p-value=0.00 %l p-value=0.00 %
= - correlation(@res, radius)=0.98 | correlation(¢res, radius)=0.99 Il

w0

~ p-value=0.00 [ ] p-value=0.00 ]

y [ ' [

I e —

- ] ==
- G [mm] . N =
E e =] -

S - correlation(@,ay, radius)=0.92 —,' correlation(¢,ay, radius)=0.86 =
g p-value=0.00 p-value=0.00 =]
e correlation(@yes, radius)=0.39 | correlation(¢,es, radius)=-0.57 =
N p-value=0.39 p-value=0.14 ]

I T T T T T T T T I T T T T T T T T
0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225

Effective range ¢(m)

The range of the spatial correlation consistently increased with
plot radius for both the model residuals and the raw responses.
For all variables, except basal area and tree density for which four
and three radius were excluded, the increase was statistically sig-
nificant for the residuals (p < 0.05; Fig. 4). To exclude the possible
effect of plot overlap on the correlation, we examined the rela-
tionship between plot radius and the empirical spatial correlation
only for the distances where there was no overlap. This included
19 different distances for each variable (152 pairs of variable
distance). For 136 cases (approximately 90% of the cases), the
Kendall’s 7 coefficient was positive, indicating that the larger the
radius was, the larger the empirical correlation of model residuals
was (Fig. 5). This result suggests that assuming uncorrelated errors
might have a larger impact when using larger plots, which raises
questions for further research about the use of different plot sizes.

Our sampling design did not allow us to examine the spatial
dependence at distances larger than 25 to 35 m depending on the
subplot radius. However, for all variables and subplot radii, the
empirical correlation at the maximum possible distance between
subplot centers was always below 0.26 and, in most cases, did not
exceed 0.1 (Table 2). For 39% (34 out of 88) of the cases, the empir-
ical correlation at the maximum distance was below 0.05. There-
fore, the distances considered in the sample always covered more
than 74% of maximum possible values of the empirical spatial
correlation of model residuals. In most cases, the coverage was
greater than 90%, and in more than one-third of the cases, it
reached the effective range (Table 2). While extrapolations based
on a spatial correlation model would be needed for predictions at
distances larger than the maximum distances examined here, the
greatest influence of the spatial correlation for both prediction
and estimation of uncertainty is at the shortest distances (Cressie
1993b, p. 134). In addition, as confirmed empirically for most vari-
ables, at the largest distances examined, the spatial correlation
almost disappeared (Table 2) and extrapolation errors would be
bounded by a very small value.

Effective range ¢(m)

The results obtained in this study emphasize the need of sam-
pling designs that include very close observations if the modeler
aims to analyze or use the spatial correlation of model errors. For
those close distances, partial overlap between plots could be a
concern, but overlap between training plots and the population
grid cells occurs in real applications and, therefore, should not be
disregarded. Incorporating the influence of overlap into the spatial
correlation function, as we did here, should not be particularly
difficult. The design used in this study also provides distances
without overlap, allowing estimation of the correlation at those
distances. Even if the overlap was considered a problem, if the
spatial correlation models fit well in the section without overlap,
the effect of plot overlap causes no harm in subsequent estimates.

The need to incorporate the spatial correlation of model errors
in model-based inference for forest inventory has received signif-
icant attention recently, as it may result in improved grid cell and
stand-level predictions and uncertainty estimators (Magnussen
et al. 2016a) and help scale up LiDAR predictions from different
inventories made with different plot or grid cell sizes to a com-
mon size (Magnussen et al. 2016b). However, most studies recog-
nize that directly estimating the spatial correlation of model
errors requires costly field observations, so they proposed indirect
methods to estimate this correlation. Typically, those methods
overcome the lack of direct measurements by relying on strong
assumptions such as proportionality of the spatial correlation
range of predictions and model errors, which cannot be empiri-
cally confirmed in the context of those studies. The spatial corre-
lation models obtained here are empirical results that can be used
directly to improve predictions or to estimate the uncertainty of
the predictions. The ratios vy raq could be used to anticipate the
spatial correlation of model errors if previous information about
the raw forest attributes of interest such as that provided by
Gunnarsson et al. (1998) was available in a similar study area.
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Fig. 5. Results for the Kendall’s 7 significance test for each variable and subplot radius. Only non-overlapping plots are considered. Subfigures
a, b, ¢, and d are examples included as a graphical legend for the figure in the upper panel. [Colour online.]

Variable

25 26 27 28 29 30

Distance (m)

Correlation between plot radius and w(d) for non overlapping plots

Positve significant Positve not significant Negative not significant Negative significant

I

- w(d) at 27 m vs radius for V (d) at 27 m vs radius for Hg
S a C
o
o
S .

° L4 °

° ° o . o . °

g S 1 I :__.'__:__: _____ e €T T-TTTT==-%
S 4
' T I [ I I I I I I T

9 10 11 12 8 9 10 11 12

(d) at 27 m vs radius for B; (d) at 27.5 m vs radius for Hg

o
2 b d
o
o L]

° . d L4 :
s 1. <

b L]
L P P, e e
o Ld [} ° L] .
S 4
' T T T T T T I T T T
8 9 10 11 12 8 9 10 11 12

The demanding fieldwork needed to estimate the spatial corre-
lation is the main reason why few studies analyze the correlation
of residuals, especially from models based on LiDAR auxiliary
information or photogrammetric point clouds (Breidenbach et al.
2008, 2016; Finley et al. 2014; Rahlf et al. 2014). Breidenbach et al.
(2008) modeled volume as a function of LiDAR variables and re-

ported spatial correlations that decrease below 0.05 for distances
of 202 m or more. The study examined pairs of observations at
distances of 100, 200, and 223 m and larger, so that only two of
those distances were within the spatial correlation range, which
makes those results lack some robustness. Breidenbach et al.
(2016) also examined volume and found correlation ranges for the
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Table 2. Empirical correlation of the model residual for each variable
and subplot radius at the maximum distance (max_distance(radius)).

Variable

Radius (m) V Biot  Bstem G H,, H, QMD N

7.5 0.04 0.07 0.07 0.15 -0.03 0.02 0.12 0.26
8 -0.02 0.03 0.04 0.03 -0.03 0.02 0.10 0.26
8.5 0.03 0.10 0.08 0.19 -0.03 0.02 0.11 0.26
9 0.02 011 0.08 0.19 0.00 0.00 0.12 0.26
9.5 0.02 011 0.08 0.19 0.03 0.02 0.13 0.26
10 0.01 011 0.08 0.19 0.06 0.02 0.13 0.25
10.5 0.00 012 0.08 020 0.09 0.04 0.12 0.24
1 0.01 012 0.09 0.21 0.10 0.03 011 0.25
11.5 0.02 012 0.09 0.06 013 0.04 010 0.24
12 0.03 0.05 0.07 0.06 0.14 0.05 0.10 0.24
12.5 0.06 0.03 0.04 0.07 0.16 0.05 0.10 0.24

“max_distance(radius) = 50 m minus two times the subplot radius.

residuals smaller than 100 m. However, while the design of this
study was more consistent and included multiple pairs of obser-
vations at close distances, it did not consider LiDAR auxiliary
information. Rahlf et al. (2014) also examined volume using a
sampling design with plots of 9 m radius and pairs of observations
at distances as small as 20 m. These authors did not observe any
spatial correlation for the residuals. Those results are in accor-
dance with the results obtained in this study for volume in which
the spatial correlation ranges varied between 13.65 m and 21.34 m
(Appendix Table Al). Finally, Finley et al. (2014) analyzed stand
tables (i.e., number of stems in predefined diameter classes) and
also found spatial correlation ranges smaller than 100 m for cer-
tain diameter classes. In our study, we examined a large set of
inventory variables and also found that the spatial range was
relatively short, particularly for the residuals of the variables that
are better explained by LiDAR metrics.

The estimated spatial correlation range of the residuals was so
short in most cases that the assumption of independent residuals
(e.g., Woods et al. 2011; Mauro et al. 2016) seems to be reasonably
accurate. For prediction, the effect of omitting the spatial corre-
lation in a situation such as the one observed in this study can be
illustrated with the following hypothetical example. If we con-
sider a systematic design with plots on the nodes of a rectangular
grid, a density of 0.1 plots-ha™!, a management unit of 50 ha, and a
grid cell size of 15 m, each management unit would contain ap-
proximately 2222 grid cells and five plots. If the spatial correlation
of the residuals vanishes at 40 m, the errors associated with each
field plot could be assumed to be independent for model-fitting
purposes. Incorporating the spatial structure to improve the pre-
dictive performance of the models would have very little impact
compared with a model that assumes independence: it would only
affect the prediction for about 35 grid cells per measured plot (i.e.,
grid cells that surround a plot and are closer than 40 m). In total,
only predictions for around 175 grid cells out of 2222 (approxi-
mately the 8% of the total number of grid cells in the MU) would be
different from those omitted the spatial correlation.

The effect of omitting the spatial correlation on the computa-
tion of variances and mean squared errors of predictions typically
results in overoptimistic uncertainty measures. Breidenbach et al.
(2016) examined this effect using 9 m radius plots in a case in
which the range of the spatial correlation of model errors was
69 m. The omission of the spatial correlation resulted in variance
estimates that were 15% smaller than those obtained when ac-
counting for the spatial correlation. However, based on the short
spatial correlation range of model errors estimated in this study,
the effect of omitting the spatial correlation on uncertainty mea-
sures should presumably be small, at least for areas of interest of
relatively large size. When using smaller plots, the effect of the
spatial correlation might be very small; on the other hand, be-
cause of the greater range when using larger plots, modelling the

Can. ]. For. Res. Vol. 47, 2017

spatial correlation may result in increased precision in the predic-
tions. This problem deserves more analysis, and further studies
should consider different plot sizes and forest attributes. The re-
sults obtained here provide a reference about the spatial correla-
tion expected for a wide set of variables.

While our results are specific for the study area, for volume,
they are in accordance with previous experiences (Rahlf et al.
2014), and in general, they suggest some guidelines for future
inventories in similar areas. First, commonly used systematic
sampling designs seem inappropriate for modeling spatial corre-
lation of LiDAR model errors in forest management inventories.
Even with plots overlaid on the nodes of an extremely dense grid,
where distance between nodes is 100 m (1 plot-ha™), estimating
the spatial correlation would be difficult or even impossible for all
variables. Sample designs with randomly located plots could pro-
vide pairs of observations within the correlation ranges, but high
sampling efforts should be done because of the short correlation
ranges observed for residuals of most variables. Based on our
experience, the best alternatives for operational forest invento-
ries that seek to analyze the spatial correlation of model errors are
as follows: (i) to include or complement the field information with
at least some large plots with georeferenced tree positions such as
the ones used in this study or (ii) use a plot shape consisting of
clusters of subplots such as that used in some national invento-
ries, e.g., the U.S. Forest Inventory and Analysis (Bechtold and
Patterson 2005). If the first alternative is used, it requires obtain-
ing tree coordinates relative to the plot center, as well as the
absolute coordinates of the plot center. Mapping every tree can be
very time consuming, but promising techniques based on terres-
trial laser scanners (Liang et al. 2016) or even photogrammetric
point clouds obtained using inexpensive cameras (e.g., Gatziolis
et al. 2015) may provide centimetric accuracy for relative coordi-
nates, while current GPS technology allows very precise position-
ing of the field plot center. For the second alternative, it may be
necessary to incorporate subplots at a greater range of distances,
as the actual FIA design, for example, only allows examining two
distances between subplots (36.58 m and 63.35 m). In any case,
both designs would allow for obtaining clusters of observations,
which is the option that Zimmerman (2006) recommended to
optimize sample designs that account for spatial correlation of
errors when both fixed effects and spatial correlation parameters
are unknown.

4. Conclusions

When auxiliary information with high explanatory power is
available, the assumption of uncorrelated errors implicitly ac-
cepted in a large number of LiDAR-assisted forest inventory appli-
cations seems to be reasonably accurate. This study showed that
the spatial range of the residuals was so short that misspecifica-
tion by ignoring the spatial correlation may not have a significant
effect on model predictions. However, the effect of such misspeci-
fication on uncertainty measures needs to be further examined.

In general, when LiDAR information is included, the spatial
correlation range of the residuals is smaller than that of the raw
variables. The reduction is greatest for variables highly correlated
with LiDAR. The spatial correlation ranges of both model residu-
als and raw variables increases with plot radius.

Sampling designs with clusters of plots separated by small dis-
tances are needed to study spatial correlation, as this tends to
vanish at distances shorter than the minimum separation be-
tween plots than the one employed in most LiDAR-assisted inven-
tories.
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Table A1l. Estimated variance and spatial correlation parameters for each variable of interest and subplots radius.

Residuals Raw variables
Variable of interest

(model predictors) rad Ooe n o, pres gres @res praw graw praw e
V (m3-ha™') (Elvmean*, 7.5 14.68 0.78 9.01x1072 5.44 0.00 16.32 16.93 0.18 47.34 2.80
EIvP01, ElvP40) 8.0 33.51 — 1.19x101 1.84 0.75 13.65 17.60 0.16 49.55 2.82
8.5 12.68 0.82 3.40x10! 6.45 0.00 19.34 18.60 0.18 52.05 2.80
9.0 12.05 0.83 3.72x107! 6.58 0.00 19.74 20.29 0.18 56.63 2.79
9.5 11.59 0.81 3.57x107! 712 0.00 21.35 22.62 0.20 62.81 2.78
10.0 1112 0.81 3.73x107! 1.47 0.71 16.93 24.86 0.21 68.51 2.76
10.5 10.71 0.81 4.42x107! 7.22 0.17 20.44 29.90 0.26 80.64 2.70
11.0 10.22 0.81 6.08x10! 1.69 0.73 18.69 36.00 0.30 94.77 2.63
Z 11.5 9.77 0.81 7.67x1071 1.50 0.73 19.55 43.40 0.34 111.85 2.58
g 12.0 9.26 0.83 8.67x1071 1.67 0.72 20.34 54.81 0.39 137.40 2.51
S 12.5 8.98 0.80 9.18x10* 1.68 0.70 21.13 70.25 0.42 172.44 2.45
- B¢ (kg-ha™) 7.5 12 217.26 0.78 4.56x102 6.44 0.00 19.32 17.47 0.40 43.49 2.49
8 (Elvmean*, CRR) 8.0 24 586.30 — 1.94x10! 6.51 0.24 17.75 17.98 0.38 45.29 2.52
> 8.5 11224.13 0.76 9.41x1072 8.19 0.00 24.58 18.89 0.39 47.24 2.50
‘65' 9.0 10 830.21 0.74 1.08x10! 8.62 0.00 25.86 20.51 0.39 51.39 2.51
o) 9.5 10 439.33 0.73 1.39x10! 9.51 0.00 28.54 22.99 0.39 57.33 2.49
=2 10.0 10 064.25 0.73 1.87x1071 10.01 0.00 30.02 25.11 0.40 62.37 2.48
S 10.5 9 746.68 0.72 2.52x10! 10.72 0.00 32.16 30.72 0.43 74.65 2.43
0 11.0 9 433.28 0.71 3.53x101 11.42 0.00 34.27 37.62 0.47 88.88 2.36
® 11.5 9154.14 0.70 4.57x107! 12.03 0.00 36.09 45.02 0.49 104.49 2.32
] 12.0 9 322.38 0.60 5.95x10! 11.01 0.00 33.03 56.31 0.52 126.78 2.25
8 12.5 9168.77 0.56 7.31x1071 10.56 0.19 29.46 72.00 0.55 158.00 2.19
D Biiem (kg-ha™) 7.5 812430  0.79 5.64x1072 6.29 0.00  18.87 17.32 0.36 4408 255
5 (Elvmean*, CRR) 8.0 16 910.59 — 1.99x10! 6.58 0.23 18.04 17.67 0.34 45.58 2.58
- 8.5 7 419.93 0.77 1.50x10! 7.68 0.00 23.05 18.54 0.35 47.52 2.56
o] 9.0 7 144.41 0.76 1.62x10! 8.00 0.00 23.99 20.23 0.35 51.87 2.56
e = 9.5 6 868.77 0.75 1.80x10! 8.83 0.00 26.50 22.48 0.35 57.52 2.56
SE 10.0 6 590.74 0.75 2.18x1071 9.21 0.00 27.63 24.73 0.37 62.77 2.54
g o 10.5 6 370.98 0.74 2.72x1071 9.77 0.00 29.30 30.20 0.41 74.75 2.48
1< & 11.0 6 142.53 0.74 3.80x10! 10.40 0.00 31.19 37.15 0.45 89.29 2.40
E—D 11.5 5912.13 0.74 4.95x101 11.07 0.00 33.20 45.23 0.47 106.54 2.36
o? 12.0 5 827.23 0.70 6.16x10~! 11.06 0.00 33.17 56.83 0.51 130.08 2.29
12.5 5756.19 0.66 7.33x101 11.21 0.00 33.62 72.04 0.53 160.93 2.23
% g QMD (cm) (EIvP95*, 7.5 7.60 0.04 5.93x1072 6.80 0.00 20.39 7.53 0.45 18.01 2.39
o9 RtAbvmean, 8.0 8.03 -0.01 6.47x1072 7.14 0.00 21.41 7.37 0.55 16.24 2.20
IS E ElvP99) 8.5 839  -0.05  6.68x1072 7.54 0.00  22.62 7.61 0.54 16.87  2.22
9.0 8.53 -0.08 6.55x1072 8.10 0.00 24.29 8.08 0.47 19.15 2.37
% 9.5 8.38 -0.08 6.68x1072 8.77 0.00 26.32 8.86 0.42 21.69 2.45
10.0 8.48 -0.11 6.60x1072 9.79 0.00 29.37 9.64 0.47 22.82 2.37
g 10.5 8.66 -0.13 6.34x1072 10.59 0.00 31.77 10.36 0.46 24.63 2.38
= 11.0 8.79 -0.16 6.24x1072 11.31 0.10 32.69 10.99 0.48 25.64 2.33
B 11.5 8.86 -0.18 6.31x102 11.59 0.10 33.54 11.02 0.46 26.18 2.38
g 12.0 8.70 -0.18 6.62x1072 12.26 0.16 34.58 11.66 0.50 26.96 2.31
o] 12.5 8.62 -0.20 6.69x10~2 13.38 0.26 36.06 12.91 0.60 26.92 2.09
= G (m2-ha™) 7.5 2.82 0.74 5.65x10-¢ 1E05 0.87 1E05 18.46 0.31 48.45 2.62
% (Elvmean*, CRR) 8.0 5.16 — 1.46x1075 6.73 0.34 17.35 18.39 0.15 52.09 2.83
o) 8.5 2.55 0.73 1.09x10-5 1E05 0.82 1E05 19.36 0.26 52.23 2.70
8— 9.0 2.45 0.72 1.31x10-° 1E05 0.81 1E05 20.90 0.25 56.49 2.70
o 9.5 2.36 0.71 1.64x10-5 1E05 0.80 1E05 22.98 0.26 62.05 2.70
- 10.0 2.29 0.70 2.07x10-° 13.90 0.00 41.69 24.95 0.26 67.20 2.69
o 10.5 2.24 0.69 2.55x10-° 14.70 0.00 4411 29.75 0.30 78.58 2.64
LL_ 11.0 2.18 0.67 3.17x10-> 15.30 0.00 45.89 35.63 0.34 91.73 2.57
F’_ 11.5 2.59 0.34 3.77x10-5 11.64 0.23 31.89 42.95 0.38 108.30 2.52
% 12.0 2.23 0.45 4.93x10-5 12.11 0.26 32.56 54.59 0.42 133.41 2.44
O 12.5 2.13 0.44 5.86x10~° 12.24 0.28 32.59 70.87 0.46 168.67 2.38
H,, (m) (EIVAAD*, 7.5 2.71 -0.04 1.54x10! 2.87 0.41 12.07 29.05 0.60 60.63 2.09
ElvP75) 8.0 2.64 -0.07 1.54x10! 3.22 0.41 12.97 19.90 0.47 46.91 2.36
8.5 2.58 -0.10 1.53x10* 3.37 0.41 13.73 13.90 0.18 38.86 2.80
9.0 2.53 -0.13 1.59x10! 4.27 0.30 14.68 13.96 0.12 40.06 2.87
9.5 2.48 -0.16 1.63x10! 6.29 0.00 18.86 14.80 0.10 42.84 2.89
10.0 2.43 -0.17 1.63x10! 7.20 0.00 21.59 15.57 0.12 44.66 2.87
10.5 2.37 -0.19 1.66x107! 8.21 0.00 24.64 16.43 0.13 47.00 2.86
11.0 2.31 -0.19 1.76x1071 9.23 0.00 27.70 17.94 0.17 50.48 2.81
11.5 2.24 -0.20 1.89x10! 10.04 0.00 30.12 19.48 0.20 53.99 2.77
12.0 2.16 -0.20 2.07x107! 10.76 0.00 32.29 23.26 0.33 60.43 2.60
12.5 2.08 -0.19 2.25x107! 11.36 0.00 34.07 32.80 0.50 75.39 2.30
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Table A1 (concluded).

Residuals Raw variables
Variable of interest

(model predictors) rad Ooe n o, pres gres @res praw graw praw e

H, (m) (EIvAAD*) 7.5 2.83 -0.04 1.87x101 4.56 0.00 13.69 20.46 0.30 53.90 2.63

8.0 2.77 -0.08 2.02x107! 4.80 0.00 14.39 16.54 0.13 47.20 2.85

8.5 2.72 -0.11 2.19x10* 2.38 0.48 13.68 15.14 0.00 45.42 3.00

9.0 2.56 -0.14 2.09x101 2.77 0.44 14.35 17.73 0.12 50.79 2.86

9.5 2.53 -0.16 2.36x107! 2.24 0.54 15.52 19.25 0.15 54.59 2.84

10.0 2.48 -0.18 2.54x107! 2.34 0.56 16.42 20.66 0.00 61.99 3.00

10.5 2.44 -0.18 2.80x10! 2.59 0.58 17.34 22.22 0.24 60.38 2.72

11.0 2.33 -0.20 2.81x101 7.26 0.00 21.77 25.92 0.30 68.32 2.64

11.5 2.28 -0.20 3.35x10! 7.80 0.00 23.39 33.52 0.41 82.91 2.47

12.0 217 -0.21 3.41x10t 8.44 0.00 25.32 46.48 0.48 108.83 2.34

12.5 21 -0.21 3.98x10* 8.98 0.00 26.94 61.90 0.53 138.67 2.24

N (no. of stems-ha™) 7.5 713 0.94 1.61x10! 29.60 0.58 62.98 24.38 0.00 73.13 3.00

(PercRtl1Abvmean*, 8.0 6.11 0.97 2.22x101 30.73 0.57 66.09 25.82 0.00 77.45 3.00

PercRtAbvmean, 8.5 5.34 1.00 3.18x10! 25.70 0.49 59.60 27.31 0.00 81.93 3.00

EIVAAD) 9.0 4.88 1.02 3.98x10! 38.90 0.58 82.57 29.15 0.00 87.46 3.00

9.5 4.70 1.02 4.43x10 53.15 0.63 105.99 30.84 0.00 92.52 3.00

10.0 4.42 1.03 5.25x10! 63.42 0.67 120.40 32.76 0.00 98.28 3.00

10.5 4.16 1.04 6.12x10! 145.03 0.73 244.45 34.78 0.00 104.33 3.00

11.0 3.90 1.05 7.10x10" 20.50 0.30 54.16 36.82 0.00 110.45 3.00

11.5 3.63 1.06 8.17x10 20.80 0.30 54.97 39.07 0.00 117.21 3.00

12.0 3.40 1.08 9.03x10! 20.25 0.24 55.00 41.62 0.00 124.86 3.00

12.5 3.17 1.09 1.01x102 21.25 0.29 56.38 69.89 0.19 194.84 2.79

Note: The most correlated predictor (mcp) for each variable of interest is denoted with an asterisk. The parameter o, is the standard deviation of the management
unit random effects, oy, and 7 are the parameters that model the variance of model errors, and pres and 6vs and p*@W and 62w are the parameters of the spatial
correlation model for the residuals and the raw variables, respectively; ¢ and ¢*aW represent the effective spatial correlation range of residuals and raw variables,

raw
¢

res ’
table; EIvP99, EIvP95, EIvP75, EIvP40, a;Pnd EIvPO01 are the 99th, 95th, 75th, 40th, and 1st percentiles of the LiDAR return heights, respectively; Elvmean and EIVAAD are
the mean LiDAR height and the average absolute deviation from the mean LiDAR height, respectively; CRR is the canopy relief ratio; and RtAbvmean, PercRtAbvmean,
and PercRt1Abvmean represent the total number of returns above the mean, the percentage of returns above the mean, and the percentage of first returns above the
mean height, respectively.

raw,res

respectively; y denotes the ratio

note that sub-indexes “vrbl,rad” have been omitted to simplify the notation as they are not necessary in the context of the
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