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Abstract

Forest inventories require estimates and measures of uncertainty for subpopulations such

as management units. These units often times hold a small sample size, so they should be

regarded as small areas. When auxiliary information is available, different small area esti-

mation methods have been proposed to obtain reliable estimates for small areas. Unit level

empirical best linear unbiased predictors (EBLUP) based on plot or grid unit level models

have been studied more thoroughly than area level EBLUPs, where the modelling occurs at

the management unit scale. Area level EBLUPs do not require a precise plot positioning and

allow the use of variable radius plots, thus reducing fieldwork costs. However, their perfor-

mance has not been examined thoroughly. We compared unit level and area level EBLUPs,

using LiDAR auxiliary information collected for inventorying 98,104 ha coastal coniferous

forest. Unit level models were consistently more accurate than area level EBLUPs, and area

level EBLUPs were consistently more accurate than field estimates except for large man-

agement units that held a large sample. For stand density, volume, basal area, quadratic

mean diameter, mean height and Lorey’s height, root mean squared errors (rmses) of esti-

mates obtained using area level EBLUPs were, on average, 1.43, 2.83, 2.09, 1.40, 1.32 and

1.64 times larger than those based on unit level estimates, respectively. Similarly, direct

field estimates had rmses that were, on average, 1.37, 1.45, 1.17, 1.17, 1.26, and 1.38

times larger than rmses of area level EBLUPs. Therefore, area level models can lead to sub-

stantial gains in accuracy compared to direct estimates, and unit level models lead to very

important gains in accuracy compared to area level models, potentially justifying the addi-

tional costs of obtaining accurate field plot coordinates.

1 Introduction

To make management decisions, forest planning requires information at different scales. This

information is typically obtained through sampling, which implies a certain level of uncertainty.

For some scales or subpopulations, the sample size may be too small, and the uncertainty too
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large, to meet the information needs. While the uncertainty can be reduced by increasing the

sample size in the subpopulations of interest, this solution may not be efficient or affordable, as

increasing the sample size would increase the cost of fieldwork beyond acceptable limits. Esti-

mation techniques that use auxiliary information usually allow for gains in efficiency when

compared to forest inventories based on plot information alone [1,2]. However, even then, effi-

ciency gains may not be sufficient to meet the information needs for very small subpopulations.

Small area estimation (SAE) is a set of model-based techniques for predicting the variables of

interest for subpopulations with very few or even no observations. Typically, they combine pre-

dictions from a model based on observations from the entire population (synthetic prediction)

with estimators derived from the observations from the subpopulation of interest (direct esti-

mation) [3].

Forest inventories often aim to provide estimates and measures of uncertainty for variables

in management units (MU) such as stands, harvest and treatment units, districts, or even

larger areas like municipalities or counties. Those MUs tend to be relatively homogeneous

internally, but differ in age, site quality or forest structure. When the MUs are large enough to

hold a relatively large sample, they can be treated as strata and either design-based estimators

or stratum-specific models can be developed for each of them separately. In this case, the

between MU variability is accounted for by separately deriving MU specific models, estimators

and measures of uncertainty that do not consider any information from MUs other than the

one under consideration. However, in practice, a more common situation is that MUs only

have a small sample size, so that MU specific modeling and estimation is not possible. Then,

MUs can be regarded as small areas and estimation can be based on models that include infor-

mation from multiple MUs and explicitly account for the between-MU variability [4]. How-

ever, model based estimation techniques rely on specifying a correct model to generate

unbiased estimators of the variable of interest and their uncertainty. Empirical best linear

unbiased predictors (EBLUPs) based on linear mixed effect models that include auxiliary

information and MU random effects are one of the most common approaches in the small

area estimation literature [5] and have been successfully applied to forest inventories [6–9].

Two different types of EBLUPs can be found in the SAE literature, depending on the modeling

scale: unit level and area level models.

For unit level models, the study area is covered by a grid where each cell is considered a

population unit with known values of the auxiliary variables [10]. Both the response and the

auxiliary variables are measured in a sample of field plots of size similar to that of the grid cells.

This sample is used to fit models that relate the variable of interest to the auxiliary information

and that include MU random effects. The variable of interest is then predicted at levels that

can range from single grid units to any combination of grid units, including full or partial

MUs and up to the entire study area [9]. Unit level EBLUPs were introduced by Battese, Harter

and Fuller [11] and were first used in forest inventories by Breidenbach and Astrup [7] and

Goerndt, Monleon and Temesgen [8].

Area level models operate at the MU level, relating MU specific auxiliary information to

direct estimates of the variables of interest. The auxiliary information and the models are

derived at a much coarser scale, because MUs are typically orders of magnitude larger than

plots or grid units. For the typical forest variables of interest (e.g. volume, basal area or stand

density), the predictive power of the MU specific auxiliary information and associated models

can be expected to be lower than the predictive power of the auxiliary information used in unit

level models, which is collected at the plot level. However, despite their potentially lower pre-

dictive performance, area level models are very appealing for practical applications because,

for unit level models, the auxiliary information must be known accurately for each field plot

while, for area level models, it is only necessary to know to what MU each field observation
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belongs. This property of area level models eliminates the need for precise field plot coordi-

nates, simplifies the fieldwork load, and allows the use of auxiliary information in combination

with inventories based on variable radius plots. An additional consideration is that, for unit

level models, the areas of interest can consist of single pixels or groups of pixels, possibly span-

ning parts of several MUs, allowing for a high degree of flexibility in how these models can be

used for prediction. However, for area level models, inference is only possible for entire MUs

or groups of MUs. Area level models were first used by Fay and Herriot [12] and introduced in

the forest inventory and forest fire modelling literature by Goerndt, Monleon and Temesgen

[6] and Boubeta et al. [13].

While the possibility of using small area estimation methods that do not require knowing

the exact plot coordinates makes area level models a very appealing alternative to unit level

models, no study to date has directly compared the two modeling techniques. A direct com-

parison of EBLUPs based on area level versus unit level models is still necessary, as it would

provide valuable insights to assess whether the lower fieldwork requirements of area level

models can outweigh their expectedly worse predictive performance. Therefore, the main

objective of the study is to compare the performance of unit level and area level models for

estimating six forest attributes (stand density (N), Volume (V), basal area (BA), quadratic

mean diameter (QMD), mean height (Hm) and Lorey’s height (HL)) for MUs with small sam-

ple sizes.

2 Material and methods

The field measurements performed in the Coos-Bay and Curry counties (44.04˚N, 123.54˚W,

42.09˚N, 124.51˚W) was approved by the US Bureau of Land Management (BLM) and did not

affect any protected or endangered species (See section 2.2).

2.1 Study Area and Management Units (MUs)

A LiDAR survey acquired by the Oregon Department of Geology and Mineral Industries

(DOGAMI) during 2008 and 2009 covered an area of approximately 1.5 million hectares in

the counties of Coos and Curry, Southwestern Oregon (SWO). The study area includes the

98,104 ha of forested lands administered by the Bureau of Land Management (BLM) within

the SWO DOGAMI flight. Limits to the North, East, South and West of the study area are

44.04˚N, 123.54˚W, 42.09˚N, 124.51˚W respectively. The most common vegetation type is

coastal coniferous forests with a variable degree of species mixing. The dominant species is

Douglas-fir (Pseudotsuga menziesii (Mirb) Franco), but other softwoods such as western hem-

lock (Tsuga heterophylla (Raf.) Sarg.), Sitka spruce (Picea sitchensis (Bong.) Carr.), and western

redcedar (Thuja plicata Donn ex D.Don) are relatively common. The most common hard-

wood species are red alder (Alnus rubra Bong.) and bigleaf maple (Acer macrophyllum Pursh),

but they are less common than the dominant softwood species.

The BLM continuously maintains the Forest Operations Inventory (FOI) spatial database.

This database contains descriptions for delineated stands covering all the BLM-administered

lands in SWO. Information about the stands in the FOI database includes stand age, an overall

description of the vegetation, and a description of the different vegetation layers present in

each stand. The average delineated stand size in the study area is 10.46 ha. With the available

sample of 867 field plots (see section 2.2), almost 90% of the stands did not contain any field

plots, and most stands in the remaining 10% contained only a single plot. Therefore, it was

impossible to model the variability among individually delineated stands (i.e. obtain models

with stand level random effects).
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Thus, the MUs considered in this study were defined by aggregating forested stands that

were in the same age class and had the same species group (determined by the dominant spe-

cies present), since stand and species group have important implications for management. The

age classes were those defined in the BLM’s FOI spatial database: stands of 5 years or younger,

and 10-year age classes for all stands greater than 5 years (6 to 15 year old, 16 to 25 year old, 26

to 35 year old and so on). The oldest stands were 576 to 585 year old. The observed species

groups were Douglas-fir, mixed-conifer and hardwood. Not all the possible combinations of

species group and age classes are present in the study area. The aggregation method that we

used was similar to what was used in the vegetation modeling for BLM’s Resource Manage-

ment Plans for Western Oregon [14].

We only considered MUs (age class by species group combinations) of at least 4.04 ha (10

acres). In total, there were 84 MUs larger than 4.04 ha, 64 contained at least one field plot and

58 contained at least 2 plots (Fig 1).

2.2 Field data collection

The study area was sampled following a probability-based sample design similar to that

described in [15,16]. The BLM approved the sampling in the study area. The sample consisted

of a total of 867, 0.052 ha circular plots, approximately the same size as the grid units. In each

plot, the diameter at breast height (DBH), height, species, crown base height, and crown ratio

of every live tree larger than 13.97 cm (5.5 in) diameter at breast height were recorded. Live

trees with a diameter at breast height less than 13.97 cm were measured in smaller, concentric

0.008 ha plots. Standing volume for each tree was computed using regional species-specific

volume equations included in the US Forest Service’s National Volume Estimator Library [17].

All variables were aggregated to the plot level by applying the corresponding expansion factors

to large (DBH� 13.97 cm) and small (DBH< 13.97 cm) trees and transformed to per hectare

values when appropriate.

Field crews located the plot center using coarse acquisition code global navigation satellite

system. Phase observations were recorded by leaving the receiver on the plot center for at least

10 minutes. Those observations were post processed, so that location errors after differential

corrections are expected to be negligible.

2.3 LIDAR collection, processing and computation of model predictors

LIDAR data were collected during the spring and summer of 2008 and 2009 using a Leica

LIDAR Phase II laser. The average return density was 8.1 returns/m2, the average flying alti-

tude was 900m above sea level, and the field of view was 28˚ (±14˚ from nadir). Additional

details about the LiDAR flight survey can be found in [16].

A square grid with a cell size of 22.86 m (0.052ha) was overlaid on the study area and each

cell represented a unit in the unit level analysis. A set of 44 predictors derived from the LIDAR

data and the FOI database were obtained for each grid cell and for each field plot. In total, 28

predictors summarizing the most relevant information about the point cloud of each grid cell

were derived using FUSION [18], including extreme values, percentiles, and fractions of pulses

above different thresholds. Two additional predictors, the MU age and dominant species (a

categorical variable) were added from the BLM FOI database. Finally, the LIDAR data was

used to obtain a digital terrain model (DTM), a digital surface model (DSM), and a digital can-

opy height model (DCHM). Slope and aspect were derived from the DTM. All these five layers

had a grid cell size of 1 meter. Their values were aggregated for each plot and unit of the

LIDAR grid for a total of 14 additional variables. A detailed description of the unit level predic-

tors and their computation is included in S1 Appendix.
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For the area level models, a set of 86 predictors was obtained. Area level predictors were

grouped into four sets depending on how they were obtained. The first group consisted of

approximate quantiles of the height distribution of returns within each MU. The second group

contained MU averages and variances of unit level predictors summarizing the point cloud of

each unit. The third group was the age and dominant species of each MU recorded in the FOI

database, and the fourth group consisted on the same predictors that were derived from units

Fig 1. Study area and location of sample plots. General location of the study area within the US state of Oregon,

location of all plots and detailed view of an example of plots and stands. A histogram of the distribution of the sample

size (ni) across management units is shown on the upper right corner. Plots are represented by solid circles. Each

management unit is represented using the same color. Stand boundaries are represented using a solid line.

https://doi.org/10.1371/journal.pone.0189401.g001
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using the 1 m resolution DTM, DCHM, slope and aspect layers. A detailed description of the

area level predictors and their computation is included in S1 Appendix.

2.4 Unit level models

The general form of the unit level models was (Eq(1)):

yij ¼ xt
ijβþ vi þ eij ð1Þ

where the subscript i = 1,. . .,m (m = 84) indexes the MU and j = 1,. . .,Ni indexes the popula-

tion unit (grid cells or plots) within the MU. The terms yij, xt
ij and eij are the value of the

response variable, the transpose of the vector of predictors, and the model errors for the jth

population unit within the ith MU. The MU random effects are assumed to be independently

distributed vi � Nð0; s2
vÞ and independent of the model errors eij. Heteroscedasticity of model

errors was allowed, assuming that eij ¼ semcpZ
ij�ij, where mcpij is the predictor most correlated

to the variable of interest. Under this formulation, �ij is the standardized error, distributed as

�ij * N(0,1), so that VðeijÞ
1=2
¼ se0mcpZ

ij, and η is a model parameter with possible values equal

to 0, 0.5 and 1. When heteroscedasticity was not present, the parameter η was 0 and the term

mcpZ
ij was 1.

2.5 Area level models

The basic area level model, also known as the Fay-Herriot model, [12] arises from the combi-

nation of a sampling model and a regression model linking the parameter of interest for each

MU to the predictors. The parameter of interest for the ith MU is the mean of the variable of

interest, denoted as μi. It is linked to the auxiliary information through the regression model

(2)

mi ¼ wt
iβþ vi ð2Þ

where vi is assumed to be normally distributed with mean 0 and variance s2
v and wi is a vector

of predictors computed at the MU level.

A direct estimator of μi, based only on the sample of plots within the MU, is available and it

is denoted as m̂Field i. In this case m̂Field i is the mean of the plots within a MU. The subscript

Field is used to emphasize that the direct estimator is computed using only field information

and no auxiliary information is considered for its computation. Both μi and m̂Field i are related

through the sampling model (3)

m̂Field i ¼ mi þ ei ð3Þ

where ei is the error of the direct estimator m̂Field i for the ith MU, which is assumed to be nor-

mally distributed with mean 0 and variance s2
e i. The direct estimator m̂Field i in this case is the

sample mean of the variable of interest for the field plots within the ith MU. When the sam-

pling model and the regression model are combined, we obtain model (4).

m̂Field i ¼ wt
iβþ vi þ ei ð4Þ

2.6 Estimators and their MSE

The parameters of interest were the MU means of N, V, BA, QMD, Hm and HL. For a given

variable of interest, the target parameter will be denoted as μi, where i is used to index the MU.

The direct estimates of μi obtained using only the field information, m̂Field i, were used as a refer-

ence to evaluate potential gains in efficiency due to the inclusion of the LIDAR auxiliary

Area level and unit level EBLUPs in forest inventories
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information through either area level model or unit level models. The direct estimator is

the mean of the plot measurements within each MU, (m̂Field i). The estimator of its mean

square error (MSE) for unit i is mse m̂Field ið Þ ¼ 1

ni

Pni
j ¼ 1

ðyij � m̂Field iÞ
2

ni� 1
, of the root mean square

error (RMSE) is rmseðm̂Field iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mseðm̂Field iÞ

p
and of the coefficient of variation (CV) is

CV mField ið Þ ¼
rmseðm̂Field iÞ

m̂Field i
. These estimators were only computed for MUs with two or more

plots.

For each SAE method and variable of interest, a model relating the LIDAR auxiliary

information and field information was selected (see S2 Appendix for details on the model

selection procedure). After model selection, we estimated the parameter of interest for each

MU from the unit level model (m̂Unit i) and the area level model (m̂Area i). We also estimated

the mean square error, root mean square error and coefficient of variation as detailed in S2

Appendix.

2.7 Comparison of estimation methods

We compared estimates and measures of uncertainty derived from area level models, unit level

models and direct estimators using only field data.

First, for each variable and for each MU, the three methods were sorted according to their

CV and rmse and the best method chosen. Then, considering only the MUs where the sample

size was larger than 2 plots, so that it was possible to compare the three methods, we calculated

the proportion of study area for which each method was best.

Then, we compared the estimates and measures of uncertainty between: 1) area level esti-

mates against unit level estimates (Area vs Unit), 2) field estimates against area level estimates

(Field vs Area) and 3) field estimates against unit level estimates (Field vs Unit). For each com-

parison, we analyzed the agreement of the MU estimates obtained with each method by com-

puting the differences between m̂Unit i and m̂Area i; m̂Field i and m̂Area i and m̂Field i and m̂Unit i. We

evaluated the increase/reduction in the estimated uncertainty when using one method instead

of another using root mean square error ratios (rmser) in Eqs (5), (6) and (7). Average rmser
values for each pair of methods were computed by weighting each MU ratio by the MU area.

rmserArea Unit i ¼
rmseðm̂Area iÞ

rmseðm̂Unit iÞ
ð5Þ

rmserField Area i ¼
rmseðm̂Field iÞ

rmseðm̂Area iÞ
ð6Þ

rmserField Unit i ¼
rmseðm̂Field iÞ

rmseðm̂Unit iÞ
ð7Þ

2.7.1 Uncertainty of estimates by MU sample size. Larger MUs contain more sample

plots and the number of plots within a MU is related to the uncertainty of the estimators. To

evaluate how the uncertainty and the agreement between estimates changed when changing

the MU size and the associated sample size, we defined five groups of MUs depending on the

number of plots that they contained. The first group consisted of 20 unsampled MUs, the sec-

ond group contained 6 MUs with only one plot, the third group contained 33 MUs with 2 to 5

plots, the fourth group had 11 MUs with 6 to 25 plots and the fifth group contained 14 MUs

with more than 25 plots. For each group, we calculated the proportion of the area covered by

the group where each method was best in terms of CV or rmse.
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3 Results and discussion

3.1 Selected models

Selected unit level models included only one or two predictors for all variables except for N

(Table 1). The selected predictors were always derived from LiDAR metrics only, except for

basal area where selected predictors were computed from the DTM and the DCHM. Neither

MU age nor dominant species were selected in any of the final models and were included only

in a few candidate models. For the area level models, the performance metrics showed a more

gradual improvement as the number of predictors increased, resulting in models with more

predictors than the unit level models. The models selected for V, BA, QMD and Hm included

predictors derived from LiDAR metrics as well as predictors derived from the DTM (Table 2).

As with the unit level models, the final models did not include neither MU age nor dominant

species.

The error variance of the MU volume was proportional to a power of the mean elevation of

the point cloud, a model similar to that of [9,19–21]. Our results confirm that, for volume,

residuals from LiDAR models show patterns of heteroscedasticity that can be successfully

modeled assuming that the error variance is a relatively simple function of the mean elevation

of a LiDAR or a photogrammetric point cloud. Expressions for the mean squared error of the

EBLUP used in this study are valid when η, the parameter that defines the weight in the

Table 1. Predictors and variance parameters for the selected unit level models. When the error variance was not constant, mcp was the first predictor,

associated to β1. Elev_mean and Elev_sd are the mean and standard deviation of the lidar heights. Elev_mean_sq is the square of the LiDAR height.

Elev_P50, Elev_P70 and Elev_P80 are the 50th, 70th and 80th percentile of the LiDAR heights. all_co_ab_2m and 1st_co_ab_mean are the proportion of

returns above 2m and the proportion of first returns above the mean LiDAR height respectively. See S1 Appendix for additional details on the variables and

model selection procedure.

Variable Coefficients and auxiliary variable η σe σv

β1 β2 β3 β4 β5

N(stems/ha) DTM_MIN Elev_P80 all_co_ab_2m 1st_co_ab_mean Elev_P50 1 0.04 8.39

V(m3/ha) Elev_mean_sq all_1st_co_ab_2m 0.5 0.26 2.39

BA (m2/ha) DTM_MEAN DCHM_MEAN 0.5 69.14 84.35

QMD (cm) Elev_P70 0.5 3.88 9.61

Hm (m) Elev_mean 0.5 0.30 0.78

Hlor (m) Elev_mean Elev_sd 0 0.26 0.61

https://doi.org/10.1371/journal.pone.0189401.t001

Table 2. Predictors and variance parameter σ2
v for the selected area level models. For each MU, Elev_P75_m is the mean of the 75th percentile of the

elevation of LiDAR returns for the pixels within the MU; Slope_m and Slope_s are the mean and variance of DTM-derived slopes; all_1st_co_2m_m and Elev_a-

ve_sq_m are the average of the pixel level percentage of first returns above 2m and the pixel level values of the square of the mean elevation of LiDAR returns;

Elev_P01_v Elev_P80_v and Elev_P99_v, are the variance of the pixel level values of the 1st, 80th and 99th percentile of the LiDAR elevations; Elev_CV_v and

Elev_max_v are the variance of the pixels interquartile range, coefficient of variation and maximum of LiDAR elevation heights; 1st_co_ab_2m_v is the variance

of the pixel level values of the percentage of first returns above 2m; Slope_s and Slope r are the standard deviation and range of the pixel level slope; A_P10,

A_P20, A_P30 and A_P60_are approximate percentiles of the LiDAR return height distribution within the MU. See S1 Appendix for the details on the computa-

tion of the LiDAR predictors.

Variable Coefficient and auxiliary variable σv

β1 β2 β3 β4 β5

N(stems/ha) Elev_CV_m Elev_P75_m Elev_P80_v A_P30 Elev_P99_v 98.06

V(m3/ha) Slope_s Slope_m A_P60 384.07

BA (m2/ha) all_1st_co_2m_m Elev_CV_v Elev_max_v Slope_m Slope_s 257.74

QMD (cm) Elev_P01_v Slope_m Slope_s A_P10 A_P20 9.51

Hm (m) all_1st_co_2m_m Elev_CV_v A_P10 A_P20 A_P30 4.66

Hlor (m) Elev_ave_sq_m Perc_W 7.03

https://doi.org/10.1371/journal.pone.0189401.t002
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expression of the variance, is known. However, in practice, this parameter is unknown and

treating it as fixed results in underestimation of the mse. Obtaining expressions for approxi-

mately unbiased mse estimators in a frequentist framework when η is unknown would require

new developments in small area estimation theory, although parametric bootstrap or Bayesian

methods could be used to overcome this problem.

For unit level models, the distribution of residuals and random effects showed departures

from normality and tails heavier than expected for a normal distribution. Alternative estima-

tors that are robust to outliers have been proposed in the literature [22]. While those types of

estimators are out of the scope of this manuscript, it is important to note that the EBLUPs for

unit level models are robust to outliers in the random effects [22]. Mixed models with uncer-

tain random effects (i.e. the distribution of the random effects follows a mixture model, where

the random effects are 0 with probability π and normally distribution with probability 1 − π)

are an alternative solution that has received significant attention in the small area estimation

literature recently [23,24], and can be a potential solution for modelling the distributions of

random effects similar to those observed here.

3.2 Uncertainty of estimates

For volume, basal area and Lorey’s height, EBLUPs based on unit level models had the lowest

rmse and coefficient of variation for most or all MUs (Fig 2). For those variables, estimates

based on either area level models or field data only resulted in the lowest rmse or coefficient of

variation in a small fraction of the study area (less than 25% of the total area). For mean height,

unit level models dominated the other methods, but the proportion of area where either area

level models or field only estimates were best was clearly larger than for volume, Lorey’s height

and mean height (Fig 2). A similar pattern was observed for QMD, although field based esti-

mates were best for an area significantly larger than that where area level estimates were best.

For stand density, area level models provided better estimates than any other method (Fig 2)

and dominated in approximately 50% of the study area, but the difference in performance

between area level and unit level models was small. This result is in accordance with previous

studies where stand density has been predicted with poor accuracies when using LiDAR (e.g.

[10,25]).

The ratios between the rmse estimated from the area- and unit level methods (Eq (5)), aver-

aged across all MUs (weighted by MU area) (Table 3) showed that, for volume, predictions

from the unit level model were much more precise than those from the area level model, and

the latter were not particularly accurate for this variable. On average, the rmse of area level

models was 2.83 times the rmse for unit level models. This ratio was always larger than 2

regardless of the number of plots in the MU. For N, BA, QMD, Hm and Hlor, rmse for area

level models was, on average, 1.43, 2.09, 1.40, 1.32 and 1.64 times greater than that for unit

level models, respectively, and unit level models tended to dominate across all MU sizes. For

all variables, unit level models performed better than area level models and direct estimators

based on field plots alone, and area level models performed better than direct estimators.

Thus, overall, incorporating auxiliary information, even when aggregated to the MU level,

would improve estimation of forest variables for small areas (Table 3). The rmse for predictions

of N,V, BA, QMD, Hm and Hlor from field measurements were, on average, 1.37, 1.45, 1.17,

1.26 and 1.3 times larger than those obtained using area level models (Table 3).

Considering the better performance of unit level models and the relatively low cost (around

1000 US$) of handheld GPS units capable of collecting phase observations and providing coor-

dinates of similar accuracy to those obtained using geodetic devices when recording times are

sufficiently large [26], unit level models may likely be the most sensible approach when other
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Fig 2. Proportion of area where each method was the best by sample size group. The group ni>2 includes all management units for which estimates

and measures of uncertainty are available for the three methods.

https://doi.org/10.1371/journal.pone.0189401.g002
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factors do not preclude using this methodology. However, the results of this study also suggest

that area level EBLUPs improve forest inventories and can help in situations when unit level

models cannot be applied. For example when using variable radius plots for fast field assess-

ments, or when confidentiality restrictions, economic or operational constraints do not allow

a precise plot positioning.

3.2.1 Uncertainty of estimates by MU sample size. For the largest MUs the ratio of rmse-

Field i to rmseArea i in (6) is less than 1 for all variables except for Hlor where it takes the value

1.01 (Table 3). This indicates that, in the study area, for very large units with more than 25

plots, direct estimates outperform area level EBLUPs. When direct and unit level estimates are

compared (7), the results show that differences become smaller as the sample size increase, but

unit level models always remain superior to direct estimates (Table 3) except for N. For this

variable, the ratio rmseField i to rmseArea i becomes 0.97 which indicates that both field and unit

level estimates are similarly accurate. In general, the inclusion of LiDAR auxiliary information

through unit level models or through area level models allow for better estimates than when

using only field data (Table 3); except for MUs with sample sizes larger than 25, where area

level EBLUPs provide estimates with less accuracy than field estimates for all variables except

Lorey’s Height. These results suggest that globally, area level models effectively improve results

obtained from field only estimates.

The size of the MUs considered in this study was relatively large which might explain the

relatively small gains obtained when using area level models in MUs containing more than 25

plots. Different results are possible in forest inventories at a smaller scale. In fact, in a study

area with MUs of smaller size, the performance of these methods was better for several vari-

ables [6]. However the analysis of the accuracy of area level models for different inventory

scales is a topic currently under research [27].

Table 3. Averages, weighted by MU area, for rrmse_ in Eqs (5), (6) and (7). The column method defines which method is in the numerator/denominator

when computing the rmse ratios.

Variable Methods Averages (weighted by MU area) of rmser_

All MUs MUs grouped by ni

0 1 2–5 6–25 >25

N(stems/ha) Area/Unit 1.43 0.60 0.67 0.68 1.05 1.71

Field/Area 1.37 4.70 1.84 0.61

Field/Unit 1.29 2.71 1.45 0.97

V(m3/ha) Area/Unit 2.83 2.21 2.17 2.00 2.20 3.18

Field/Area 1.45 3.49 1.91 0.94

Field/Unit 3.34 6.67 4.01 2.53

BA(m2/ha) Area/Unit 2.09 2.30 2.45 1.96 2.01 2.13

Field/Area 1.17 2.65 1.36 0.84

Field/Unit 2.30 5.12 2.60 1.68

QMD(cm) Area/Unit 1.40 1.12 1.13 1.06 1.23 1.52

Field/Area 1.17 2.65 1.26 0.86

Field/Unit 1.47 2.84 1.50 1.19

Hm(m) Area/Unit 1.32 1.05 1.09 1.00 1.17 1.44

Field/Area 1.26 2.41 1.53 0.97

Field/Unit 1.50 2.41 1.70 1.27

Hlor (m) Area/Unit 1.64 1.18 1.19 1.24 1.37 1.81

Field/Area 1.38 2.87 1.71 1.01

Field/Unit 2.13 3.56 2.36 1.80

https://doi.org/10.1371/journal.pone.0189401.t003
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While prediction using LiDAR data in a unit level framework has been investigated during

the last decades [10,28,29], very little is known about the performance of area level models.

Results from this study provide a reference about the gain or loss of accuracy of using one type

of EBLUP instead of another and, about how much each type of EBLUP reduces the uncer-

tainty of estimates based only on field data. While, the comparisons made in this study are

based on estimated root mean square errors, therefore subject themselves to some uncertainty,

rmse estimators used in this analysis are unbiased, and values are reported by groups which

favors the compensation of estimation errors. To the best of our knowledge the variance of the

rmse estimators used in this analysis is not known and is a topic of clear interest for future

research.

Another issue that may merit further examination is how the predictors for area level mod-

els are calculated when MUs are as large as here. In this study, we computed most area level

predictors after aggregating the values of unit level predictors or DTM, DSM and DCHM ras-

ters and computing their means and variances. Most of those predictors can be obtained using

standard GIS arithmetic over raster layers, which is appealing for its simplicity. However,

when proceeding in this way, predictors are calculated in a way that is not completely equal to

the standard way of computing unit level predictors, in particular when computing quantities

such as quantiles and variances. While computing predictors using the point clouds in the

same way as it is done for unit level models is possible, the size of the MUs makes this an inop-

erative task. The size for 24 MUs was greater than 1000 ha (1090.54 ha to 12067.62 ha) and the

MU shapes were fairly irregular. Calculating predictors in the same way as it was done for the

unit level models would imply reading and dealing with 15 GB to 180 GB of point cloud infor-

mation. The area level predictors could be directly computed from the LiDAR point clouds,

which may result in better performance. Such analysis should be subject to future research.

4 Conclusions

Although differences for the rmse of estimates obtained by different methods depended greatly

on the variable of interest, estimates with unit level models were, on average, much more accu-

rate than those obtained using area level models. Area level estimates are consistently more

precise than estimates obtained using only field information, and therefore, can enhance the

results of traditional inventories when estimating for small areas. For areas with large sample

sizes, direct design based estimators provide comparable accuracies without the need of mak-

ing strong assumptions about the population of interest by assuming a model. Differences

between methods tend to become smaller as the sample size increases, and for very large MUs

area level models estimates can have larger rmse than traditional field only estimates.

From the results obtained in this analysis, we conclude that area level models improve forest

inventories, however, their niche may be limited to situations where plot locations are not

available or when using variable radius plots and MUs do not hold a large sample size that pro-

vides reliable estimates.
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