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Calibration of volume and component biomass equations for 
Douglas-fir and lodgepole pine in Western Oregon forests

by Krishna P. Poudel1 and Temesgen Hailemariam1*

ABSTRACT 
Using data from destructively sampled Douglas-fir and lodgepole pine trees, we evaluated the performance of regional vol-
ume and component biomass equations in terms of bias and RMSE. The volume and component biomass equations were
calibrated using three different adjustment methods that used: (a) a correction factor based on ordinary least square regres-
sion through origin (OLS-RTO method); (b) a correction factor based on OLS with intercept (OLS-WI method); and, (c)
an inverse approach. The regional volume equations performed fairly well and produced similar results as the locally fit-
ted volume equations of the same form but the regional predicted component biomass estimates were highly biased. All
adjustment methods improved the performance of regional equations for the calibration dataset. Based on leave-one-out
cross validation, the calibration based on OLS-RTO and OLS-WI methods reduced the RMSE for all species-component
combinations. The inverse approach improved the performance of the regional equations for Douglas-fir but it did not
improve lodgepole pine regional biomass equations. The decreasing trend of RMSE in component biomass estimation by
using randomly selected trees to calibrate regional equations slowed down considerably after five trees.

Key words: volume equations, component biomass equations, Douglas-fir, lodgepole pine

RÉSUMÉ
Au moyen de données acquises par des tests destructifs sur des tiges-échantillons de sapin Douglas et de pin lodgepole,
nous avons évalué la performance d’équations régionales de volume et des composantes de la biomasse quant au biais et
à l’erreur moyenne quadratique. Les équations de volume et de composantes de la biomasse ont été calibrées selon trois
méthodes d’ajustement différentes en utilisant : (a) un facteur de correction tiré de la méthode des moindres carrés ordi-
naires (méthode MCO-RTO); (b) un facteur de correction tiré d’une MCO avec étalonnage (méthode MCO-WI); et (c)
une approche inverse. Les équations régionales de volume ont fonctionné de façon acceptable et ont généré des résultats
similaires à ceux obtenus au moyen d’équations de volume de forme semblable ajustées aux conditions locales, mais l’es-
timation des composantes de biomasse régionales était fortement biaisée. Toutes les méthodes d’ajustement ont permis
d’améliorer la performance des équations régionales après la calibration des données de base. Selon une validation croi-
sée utilisant une méthode d’exclusion d’une donnée (leave-one-out cross-validation), la calibration basée sur les méthodes
MCO-RTO et MCO-WI a réduit l’erreur moyenne quadratique de toutes les combinaisons espèces-composantes. L’ap-
proche inverse a amélioré la performance des équations régionales dans le cas du sapin de Douglas, mais n’a pas permis
d’améliorer les équations régionales de biomasse du pin lodgepole. La tendance à la baisse de l’erreur moyenne quadra-
tique dans l’estimation des composantes de biomasse en utilisant m arbres choisis au hasard pour calibrer les équations
régionales, a considérablement diminué après cinq arbres.  

Mots clés : équations de volumes, équations des composantes de biomasse, sapin de Douglas, pin lodgepole
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Introduction 
The estimation of total and merchantable stem volume is cru-
cial for land managers to ascertain continuous production of
timber and other forest products. These estimates are
obtained either by using direct volume equations or by the
integration of stem profile equations. Volume equations are
typically species-specific regression models that range from
single entry simple linear regression models that relate tree
volume with diameter at breast height (DBH), to multiple
entry nonlinear regression models that use multiple explana-
tory variables such as DBH, height, and crown ratio.

Several published volume equations are available and are
typically used at different scales of forest management. Gen-
erally these equations are developed for national or regional
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scale applications but are also regularly used to predict tree
volume at local scales. However, the differences in stand con-
ditions affect tree form and consequently tree volume (Bluhm
et al. 2007, Temesgen et al. 2015). The Forest Inventory and
Analysis program in the Pacific Northwest Research Station
(FIA-PNW) uses direct volume equations for tree volume
estimation based on   Brackett (1973), particularly for Dou-
glas-fir and lodgepole pine. The tarif system is a set of previ-
ously constructed local volume tables that are applicable to a
specific stand (Zhou and Hemstrom 2010). The accuracy of
these equations is critical, not only because the estimate of
tree volume is directly related to the economic aspect of for-
est management, but also because the calculation of other
important variables such as biomass is dependent on the esti-
mate of volume. However, the evaluation of existing volume
equations is a rare opportunity (Omule et al. 1987) because it
requires destructively sampled data.

Tree biomass or its components is defined as its oven-dry
weight. The amount of biomass present in a forest indicates
the amount of carbon dioxide that is stored and sequestered
by that forest because the carbon content in biomass is
approximately 50%. Various climate change agreements and
action plans at scales ranging from local to international, such
as the United Nations Framework Convention on Climate
Change and in particular the Kyoto Protocol, recognize the
importance of  the forest carbon sink and the need to moni-
tor, preserve and enhance terrestrial carbon stocks (Zianis et
al. 2005). Additionally, a number of voluntary and regulated
carbon markets have provisions for carbon sequestration
credits from forest management projects that meet certain
criteria and verification. 

In addition to a total above-ground biomass estimate,
knowledge of biomass in different components is useful for
different purposes. Stem wood is important in timber sales;
crown biomass is useful in fuel load assessment, formulating
fire management strategies, and developing wildfire models.
The biomass in small branches and leaves/foliage determines
the possibility of installing bioenergy plants by providing
information on the amount of available feedstock. The FIA-
PNW calculates biomass of the main stem, whether mer-
chantable or total, from the cubic volume estimates and pre-
viously compiled set of wood density factors. The biomass of
other components is calculated from published models
derived from local tree studies as functions of DBH and total
tree height (Zhou and Hemstrom 2009).

Currently above-ground biomass in the United States is
calculated using one of three methods: 1) the component
ratio method (CRM) of the FIA; 2) equations developed by
Jenkins et al. (2003) based on meta-analysis of previously
published models; and, 3) models developed for regional
applications. U.S. official carbon inventories are based on tree
biomass estimates from the component ratio method
described by Woodall et al. (2011), whereas understory vege-
tation biomass is from Jenkins et al. (2003) equations (U.S.
EPA 2015). The literature on above-ground biomass estima-
tion is voluminous. Early biomass studies were focused on fit-
ting small-scale site- and species-specific allometric equa-
tions, while recent studies have focused more on fitting
techniques and application of remote sensing techniques.
Large-scale biomass studies based on remotely sensed data
use estimates from one of these methods (FIA-CRM; Jenkins;
regional equations) as the observed true value of biomass.

The accuracy of these methods is seldom tested against the
observed biomass data obtained from destructive sampling.
Instead, the estimates obtained from these methods have
been compared to one another. For example, Zhou and Hem-
strom (2009) found similar estimates of total above-ground
biomass from these methods but substantially different esti-
mates for the merchantable biomass for softwood species in
Oregon. Jenkins equations produced estimates that were 17%
higher than the estimates from regional equations. Similarly,
Poudel (2015) found that the Jenkins method for Douglas-fir
produced total above-ground biomass that was 18.4% and
23.7% higher than estimates provided by the FIA-PNW and
FIA-CRM methods respectively.

Accurate estimates of above-ground biomass are needed
to reduce uncertainties in global and regional terrestrial car-
bon fluxes (Houghton et al. 2009). Direct measurement of
biomass on the ground is time-consuming and expensive
(Houghton 2005) and the component biomass estimates
obtained as percentages of total or stem biomass from pub-
lished information might be very simplistic (Hansen 2002).
Similar to volume equations, the evaluation of biomass mod-
els is also time-consuming and expensive because it requires
destructively sampled data. 

Zeng et al. (2011) used a dummy variable model approach
to construct compatible single-tree biomass equations at dif-
ferent scales. They found these models with local parameters
to perform better than a population-average model. Räty and
Kangas (2008) noted that regional models may not be unbi-
ased at the local scale if there is spatial variation in tree form
due to one or more unknown predictors, and this regional
bias could be reduced or removed if the models are localized
to each sub-region or subarea.

Model calibration is needed when the predictive validity of
a model is in question or when the data are inadequate to esti-
mate model inputs. It is the process of systematic adjustment
of model parameters such that the adjusted model predicts
the observed outputs more accurately (Taylor et al. 2012).
Two options are available when sample volume and biomass
data are available at a local scale: 1) fit new volume or biomass
equation; or, 2) use the available data to calibrate existing
regional models. However, the sample size required for fitting
new models is relatively larger than that required for calibra-
tion of existing equations (Garber et al. 2009). Calibration
itself is sometimes criticized because it requires destructive
sampling if the original model formation is based on destruc-
tive sampling (Ketterings et al. 2001).

Calibration of large-scale prediction models is not new to
forestry. Sadiq and Smith (1983) calibrated volume equations;
Eerikäinen et al. (2002) the site index model; Lappi (1991),
Jayaraman and Zakrzewski (2001), Temesgen et al. (2008),
and Garber et al. (2009) height-diameter equations. The cali-
bration of biomass models by de-Miguel et al. (2014) used
simulated data. These studies employed mixed effects models
in which the mean effect is described by a general functional
form and the variability due to stand or plot effects is
accounted by the random effect parameter. The calibration
process in this approach is based on the best linear unbiased
predictor of the random effects parameter. Temesgen et al.
(2008) used this approach to calibrate nonlinear height-diam-
eter equations while Garber et al. (2009) used it in evaluating
the effects of height imputation strategies on stand volume
estimation. Another commonly used method for calibrating
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regional models is based on an ordinary least square (OLS)
correction factor. A multiplicative correction factor based on
an OLS regression is obtained through measured and regional
predicted values of variable of interest (e.g., Hanus et al. 1999,
Hann 2006, Temesgen et al. 2008, Garber et al. 2009). Temes-
gen et al. (2008) obtained results from OLS correction factors
that were comparable with the results from mixed effects
model when four or more trees were subsampled for height
while Garber et al. (2009) obtained 95% decrease in root
mean squared error (RMSE) when the regional models were
calibrated with a subsample of three tree heights. 

Development of site- and species-specific biomass equa-
tions is expensive. Therefore, there is a need for research on
calibration of volume and component biomass equations. The
objectives of this study are to evaluate the performance of (1)
existing volume and biomass equations in terms of their pre-
diction errors; and (2) three different calibration methods
that use a correction factor based on (a) OLS regression
through origin (OLS-RTO method), (b) OLS with intercept
(OLS-WI method), and (c) an inverse approach.

Materials and Methods
Data
A detailed biomass data collection was carried out by destruc-
tively sampling twenty-two Douglas-fir (Pseudotsuga men-
ziesii (Mirbel) Franco) and thirty-three lodgepole pine (Pinus
contorta Dougl. ex Loud.) trees in different forests within the
state of Oregon. Efforts were made to select trees that gave an
approximately equal representation across the range of size
class while avoiding ones with severe defects and/or close to
stand boundaries. Trees that were forked below breast height
and trees with damaged tops were also not included in sam-
pling (Poudel et al. 2015). The field work was carried out
between the first week of July and third week of September
2012 and 2013. Tree-level attributes such as DBH, total
height, height to the base of first live branch, crown width,
and stem diameter outside-bark (DOB) at 0.15 m, 0.76 m,
1.37 m, 2.44 m above ground, and every 1.22 m afterwards
were recorded. For all first-order branches (branches directly
attached to the main bole), their height above ground and
diameter at their base were recorded for a total of 2 975 Dou-
glas-fir and 4 458 lodgepole pine branches. Average DBH was
54.9 cm (range 19.3 cm–114.0 cm) and 24.6 cm (range 13.5
cm–42.9 cm) and average height was 33 m (range 16.6
m–48.8 m) and 17 m (range 9.2 m–31.9 m) for Douglas-fir
and lodgepole pine respectively.

Data compilation
The observed inside-bark cubic volume, including top and
stump (CVTS), was calculated as follows. After the subject
tree was felled, it was sectioned into 5.18 m long sections.
Three to five centimetre thick disks were removed from the
top of the stump and at every 5.18 metres; diameter-inside
bark at both ends of the 5.18 m sections were also obtained.
The diameter-inside bark at stem heights where DOBs were
measured were obtained by linear interpolation of bark thick-
ness ratios at section ends. The inside-bark cubic volume of
these sections was calculated using Smalian’s formula below:

(1)

Where V is the volume of the section of length L in cubic
metres,  A�is (i =1, 2) are the cross-sectional areas at the small 
and large end of the sections in m2 with and Di = 

diameter inside-bark (m) at the ith end of the section. 
Inside-bark volume of the stump was calculated as a cylin-

der whereas the volume of the top section was calculated as a
cone.

(2)

(3)

Where Vs and Vt are inside-bark volume of stump and top,
respectively, in cubic metres, Ds and Dt are the inside-bark
diameter (m) at the stump top and bottom of the top section,
respectively, and Hs and Ht are the stump height and length of
top section in metres, respectively. Total inside-bark CVTS
was calculated by summing the inside-bark volumes of all
sections, stump, and top. 

In the field, green weight of the disks and their diameter
inside- and outside-bark as well as four measurements 90°
apart along the disk edge for thickness were recorded. Green
volume was calculated as the volume of a cylinder. Once in
the lab, the whole disks were dried in a kiln at 105°C until
constant weight was recorded. Disk densities were then
obtained as the ratio between dry-weight to green volume.
The volume of each 5.18 m section was converted into bio-
mass by multiplying it by the average density of the disks
taken from two ends. Biomass in stump and top section was
calculated by converting respective volumes using the densi-
ties of the disks taken from top of the stump and top of the last
5.18 m log respectively. Total bole biomass was the sum of the
section masses. The outside-bark CVTS was calculated in
similar fashion as the inside-bark CVTS using diameter out-
side-bark instead of diameter inside-bark. Bark volume for
each of the 5.18 m sections was obtained by subtracting
inside-bark volume from outside-bark volume. Section bark
biomass was calculated by multiplying section bark volume
by bark density obtained as the ratio between oven dry-
weight to green volume of 5- to 10-cm long rectangular bark
samples taken from each disk. Bark samples were dried at
70°C. Total stem bark biomass was obtained by summation.

The crowns of the sample trees were divided into three
equal length strata. Four, three, and two first-order branches
respectively from lower, middle, and upper stratum were then
randomly selected for weighing with and without foliage. The
needles from those branches were removed in the field to
obtain separate green weights of bare branch with bark and
with foliage. The branches were brought to lab, keeping
branch wood and foliage in separate paper bags for drying.
The branches were chipped into small pieces and dried in a
kiln at 105°C while the foliage samples were dried without
chipping at 70°C. Oven dry-weight was recorded by tracking
the weight lost by each sample until no further weight was
lost. Individual branch wood and foliage biomass was
obtained by fitting species-specific log linear model of the fol-
lowing form: 

(4) 
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Where yij , and BDij are oven dry-
weight (kg) of branch wood or
foliage and branch diameter (cm) at
base of the jth branch on ith tree
respectively;  �ij �s are regression
parameters to be estimated from the
data; ln(·) is the natural logarithm;
εij �s are the random error. Similar
model form has been used by
Temesgen et al. (2011) to estimate
foliar biomass in Douglas-fir and
ponderosa pine and by Poudel et al.
(2015) to estimate crown biomass in
Douglas-fir. Total branch wood and
foliage biomasses were obtained by
summing individual branch wood
and foliage biomass.

Regional equations 
Table 1 summarizes the sets of vol-
ume and biomass equations used by
FIA-PNW to obtain CVTS and
component biomass. The FIA-PNW
does not have an equation for foliage
biomass (Melson et al. 2011) and our
FIA-PNW equivalent foliage bio-
mass estimates were based on the
foliage biomass equation of Standish
et al. (1985). The FIA-PNW volume
and biomass equations were also
refitted with our dataset to compare the differences in pub-
lished coefficients against the coefficients of refitted models of
the same form.

Calibration of regional models
Model calibration is needed when the predictive validity of a
model is in question or when the data are inadequate to esti-
mate model inputs. We first graphically compared the regres-
sion lines produced by regional volume equations with locally
refitted volumes equations of the same form. The empirical
cumulative distribution function (ECDF) of the component
biomass estimates obtained from the FIA-PNW equations
and the ECDFs of the measured volume and biomass esti-
mates in different above-ground components were also
graphically compared. The ECDF is the cumulative distribu-
tion function  associated with the empirical measure  of
the sample observations. In our case, it shows the percentage
of trees in the sample that have less than or equal to specific
values of biomass. For independent and identically distrib-
uted random variables x1, …, xn, the ECDF is defined as:

(15)

Where,  1{A} is the indicator of an event A.

Three different methods of calibrating regional equations
were then applied to adjust the regional prediction obtained
from the FIA-PNW equations:

OLS-RTO Method
If a sample of volume and biomass estimates for n new trees
is available, the regional equations can be calibrated using a

correction factor based on an ordinary least squares regres-
sion through origin. The technique is described in Draper
and Smith (1998) and has been implemented by Temesgen et
al. (2008) to calibrate nonlinear height-diameter models and
by Garber et al. (2009) to estimate stand volume. When n
sample trees from a new stand are available, the correction
factor based on OLS-RTO can be calculated as:

(16)

Where,  Mi and RPi are measured and regional predicted val-
ues of volume or component biomass for the ith tree respec-
tively. Then the corrected (calibrated) value of volume or
component biomass for a new tree can be calculated as M̂i �
k � RPi. This OLS correction factor can be obtained based on
the measurement of a single tree. The correction factor is just
a ratio of measured and regional predicted volume or biomass
of that tree.

OLS-WI Method
With Mi and RPi defined as in the OLS-RTO method, the
relation between Mi and RPi can be explained by a simple lin-
ear regression model with the following form:

(17)

Where � and � are the parameters in the linear regression
and εi the random error. Then with the least squares estima-
tors a and b of � and � respectively, the corresponding cali-
bration equation is:

(18)

Table 1. Volume and biomass equations used by FIA-PNW to estimate cubic volume
including top and stump (CVTS,m3) and component of above-ground biomass (kg) for
Douglas-fir and lodgepole pine. 

Species Volume/Biomass Equation

Douglas-fir

Lodgepole Pine

(CVTSL= logarithm of CVTS, base of the logarithm is 10, HT = total tree height (m), and DBH = diameter at breast
height (cm); WD is wood density which is 459.7 and 370.0 kilogram per cubic meter for Douglas-fir and lodgepole
pine respectively)
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Thus, if one obtains RPi as the regional predicted value of vol-
ume or biomass, the unknown value (Mi) of volume or bio-
mass estimates for the new tree can be estimated using equa-
tion 18. Note that this method violates the assumption of
simple linear regression that the independent variable is
measured without error because the regional predicted esti-
mate comes with its associated error.

Inverse Approach
The inverse approach of model calibration has been described
by Kutner et al (2004). By switching the dependent and inde-
pendent variables in equation (17), the simple linear regres-
sion model can be written in the following form:

(19)

Then with the least squares estimators c and d of � and �
respectively, the fitted values for  can be calculated as 

R̂Pi � c � d * Mi. Thus, if now one obtains  as the regional
predicted value of volume or biomass, the unknown value
(Mi) volume or biomass for the new tree can be estimated as:

(20)

The performance of all the methods was evaluated based
on the bias, bias percent, RMSE, and RMSE percent (collec-
tively called “evaluation statistics”) produced by each method.
In statistics, bias is defined as the difference between the true
value of an unknown parameter and the expected value of its
estimator. Bias in this study is defined as the mean difference
between the measured and model predicted value of the vari-

able of interest. Evaluation statistics were obtained using the
leave-one-out cross validation approach (Stone 1974). One
tree was removed from the data, a correction factor obtained
based on the remaining n �1 observations and the process
repeated until all the observations have been removed and the
evaluation statistics were calculated.

Results and Discussion
CVTS 
The volume estimates obtained from FIA-PNW equations
with their original coefficients and refitted FIA-PNW equa-
tions were similar for Douglas-fir trees that were smaller than
approximately 90 cm DBH. For trees larger than 90 cm DBH,
the original FIA-PNW equation slightly underestimated the
cubic volume (Fig. 1). On the other hand, for lodgepole pine,
the original FIA-PNW equation consistently over-estimated
CVTS even for trees that were 25 cm DBH (Fig. 1), compared
to the refitted PNW equation. The evaluation statistics
obtained from these methods are presented in Table 2. 

The FIA-PNW volume equation for Douglas-fir is a six-
parameter multiple linear regression model (Table 1, equation
5). When refitting this equation to our dataset, only the inter-
cept term was statistically significant at 5% level of signifi-
cance and the DBH was significant at 10% level of signifi-
cance. Three out of the six coefficients also had different signs
than that of the original coefficient. Therefore, we also fitted
a simple volume equation (local volume equation) for Dou-
glas-fir as a function of DBH and height. The refitted PNW
equation reduced RMSE in Douglas-fir CVTS estimates by
3% compared to the PNW equation with original coefficients.
The simple three-parameter local volume equation produced
similar RMSE compared to the six-parameter PNW equation

Fig. 1. Graphical comparison of CVTS estimates obtained by using regional model coefficients and locally refitted volume equations of
the same form.
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with original coefficients (Table 2). For lodgepole pine, the
refitted PNW equation reduced RMSE by 10.4%. 

The regional volume equations were calibrated using three
different methods. In Douglas-fir, the calibrated volume
equations also produced similar RMSE percent as the PNW
volume equation with original coefficients. This was expected
due to the fact that the CVTS estimates obtained from PNW
equations with original coefficients were similar to those
obtained from the refitted PNW equation for Douglas-fir,
hence the calibration would not result in any improvement.
However, in case of lodgepole pine, the calibrated PNW equa-
tion performed as well as the refitted PNW equation, reduc-
ing RMSE by up to 10.6%. The performance of the different
calibration methods was similar for both species (Table 2).

Biomass 
The FIA-PNW bole biomass estimates are
products of the inside-bark CVTS and the
compiled set of species specific wood den-
sity values. Thus the curves of inside-bark
bole biomass estimates against DBH are
similar to inside bark CVTS curves but
scaled by wood density. In other words,
they have the same shape but different
scales. The ECDFs of component biomasses
obtained from regional models and meas-
ured component biomasses differed for
both species, implying that the probability
of observing a tree with less than or equal to
certain amounts of component biomass
based on FIA-PNW equations is different
than the actual probability, based on the
sample data measured in this study. These
differences were more pronounced in com-

ponents other than in the bole (Fig. 2 and Fig. 3).
Since the FIA-PNW does not have a specific equation for

inside-bark bole biomass, we fitted a local bole biomass equa-
tion as a function of DBH and total tree height. The evalua-
tion statistics obtained from regional and local or locally refit-
ted component biomass equations are given in Table 3. The
FIA-PNW Douglas-fir bark biomass equation does a very
poor job and over estimates it by 221.5%. This difference
could possibly be attributed to the fact that the FIA-PNW
bark biomass equation for Douglas-fir was based on data with
maximum DBH of 66 cm. Hence, a careful consideration
might be necessary in applying the regional models to esti-
mate bark biomass in Douglas-fir.

Table 2. Evaluation statistics produced by regional, refitted regional, and cali-
brated equations in estimating inside bark CVTS predictions for Douglas-fir and
lodgepole pine.

Bias Bias RMSE RMSE 
Species Method (m3) Percent (m3) Percent

Douglas fir PNW-Refit 0.0093 0.2373 0.5335 13.6148
PNW 0.0625 1.5950 0.6489 16.5598
Local -0.0091 -0.2322 0.6383 16.2893

OLS-RTO -0.0321 -0.8192 0.6344 16.1897
OLS-WI 0.0000 0.0000 0.6328 16.1489
Inverse 0.0000 0.0000 0.6401 16.3352

Lodgepole pine PNW-Refit -0.0011 -0.2555 0.0555 12.8898
PNW -0.0471 -10.9389 0.1004 23.3178

OLS-RTO 0.0112 2.6012 0.0570 13.2382
OLS-WI 0.0000 0.0000 0.0547 12.7040
Inverse 0.0000 0.0000 0.0552 12.8201

Fig. 2. Comparison of ECDFs of Douglas-fir component biomass estimates obtained from regional equations (dotted line) and measured
(solid line) values. The ECDF shows the percentage of trees in the sample that have less than or equal to certain amount of biomass.
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OLS-RTO Method
The evaluation statistics obtained by using a correction factor
based on the OLS-RTO method in calibrating regional com-
ponent biomass equations obtained from the leave-one-out
cross validation method are given in Table 4.

The values of OLS-RTO correction factor ranged from
0.0277 (for Douglas-fir bark biomass) to 1.7849 (for lodge-
pole pine branch biomass). Results from the leave-one-out
cross validation showed that this correction factor reduced
RMSE in Douglas-fir bole, bark, foliage, and branch biomass
by 4.4%, 325.4%, 24.1%, and 2.5%, respectively (see caution-
ary note about bark biomass estimation in Summary and
Conclusion). For lodgepole pine, RMSE was reduced by 2.1%,

7.4%, 6.2%, and 10.1% for bole, bark, foliage, and branch bio-
mass respectively. The performance of the calibration based
on an OLS-RTO correction factor calculated using randomly
selected  Douglas-fir and lodgepole pine trees is shown in Fig.
4 and Fig. 5 respectively.

The RMSE decreases considerably by using two trees com-
pared to just one and the rate of decrease in RMSE slows
down after five trees for both species. It should be noted that
measuring biomass in a large number of trees to calibrate
regional models is impractical (Temesgen et al. 2008) because
one would rather fit a local model than to calibrate a regional
model with the available data set.

Fig. 3. Comparison of ECDFs of lodgepole pine component biomass estimates obtained from regional equations (dotted line) and measured
(solid line) values. The ECDF shows the percentage of trees in the sample that have less than or equal to certain amount of biomass.

Table 3. Evaluation statistics in volume and component biomass estimation obtained from regional and locally refitted volume and
component biomass equations.

Local/PNW-Refit PNW

Bias Bias RMSE RMSE Bias Bias RMSE RMSE
Species Variable (kg) Percent (kg) Percent (kg) Percent (kg) Percent

Douglas fir
Bole -1.52 -0.08 229.94 12.00 182.83 9.54 311.68 16.26
Bark -2.49 -2.36 27.82 26.32 -234.16 -221.52 382.25 361.60
Foliage 0.01 0.02 18.41 32.38 -14.89 -26.18 37.66 66.22
Branch 0.94 0.42 66.11 29.82 47.05 21.23 85.86 38.73

Lodgepole pine
Bole 1.99 0.90 68.56 31.14 38.83 17.64 78.71 35.75
Bark 0.00 -0.01 7.38 61.47 -3.87 -32.21 9.39 78.14
Foliage 0.00 0.01 9.96 56.40 6.59 37.31 12.02 68.07
Branch -0.01 -0.02 32.42 68.10 22.67 47.61 40.65 85.38

T
he

 F
or

es
tr

y 
C

hr
on

ic
le

 D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ci

f-
if

c.
or

g 
by

 O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

 o
n 

10
/0

4/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



2016, VOL. 92, No 2 — THE FORESTRY CHRONICLE 179

OLS-WI Method 
The evaluation statistics obtained with OLS-WI adjustment
based on leave-one-out cross validation are presented in Table
5. The absolute bias obtained from the leave-one-out cross
validation was less than 2% for all component biomass and as
expected, it produced unbiased estimates of component bio-
masses for the dataset on which the calibration equation is
based. Compared to the unadjusted PNW component bio-
mass equations, the RMSE in bole, bark, foliage, and branch
biomass was reduced by 4.25%, 328.24%, 27.89%, and 2.25%

for Douglas-fir and by 1.88%, 3.45%, 4.91%, and
9.5% for lodgepole pine respectively.

Inverse Approach
The inverse approach of the calibration of
regional equations also provided unbiased esti-
mates of component biomass for the data on
which the calibrating equation was based. Addi-
tionally, the absolute bias obtained from the
leave-one-out cross validation was less than 2%
for all component biomass from this approach
(Table 6). Calibrating regional equations with
inverse regression improved the performance of
these equations for Douglas-fir but not for
lodgepole pine. 

It is expected that the calibrated models per-
form better than the unadjusted regional mod-
els. However, from a practical perspective, it is
desirable that the calibrated models perform as

well as locally fitted models. The OLS-RTO adjustment per-
formed as well as the locally refitted models for CVTS and
component biomass models except for Douglas-fir foliage
biomass, when all data is used to calculate the correction fac-
tor. However, the results from leave-one-out cross validation
showed that the locally refitted models performed better than
the calibrated models.

Even though having an intercept in the calibration equa-
tion provides more flexibility in adjustment, the performance
of OLS-WI was similar to the OLS-RTO for most of the

Table 4. Evaluation statistics from leave one out cross validation in compo-
nent biomass estimates obtained from OLS-RTO adjustment of the regional
component biomass equations. Values of k are obtained as the average of
k values obtained from the leave one out cross validation approach. 

Bias Bias RMSE RMSE
Species Variable k (kg) Percent (kg) Percent

Douglas-fir
Bole 1.0955 15.15 0.79 227.18 11.85
Bark 0.2770 10.78 10.20 38.30 36.24
Foliage 0.6920 6.85 12.04 23.97 42.15
Branch 1.2061 10.26 4.63 80.37 36.25

Lodgepole pine
Bole 1.1598 8.88 4.03 74.05 33.63
Bark 0.7215 0.47 3.92 8.49 70.71
Foliage 1.5212 0.74 4.17 10.94 61.91
Branch 1.7849 2.75 5.77 35.86 75.32

Fig. 4. Trend in RMSE percent in estimating component biomass from regional models adjusted with OLS-RTO method calculated from
randomly selected m Douglas-fir trees. The process of selecting m trees was repeated for 5000 times. The RMSE percent from unad-
justed regional equations were 16.3%, 361.6%, 66.2%, and 38.7% for bole, bark, foliage, and branch biomass respectively.
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species component combinations. The OLS-WI for the cali-
bration data performed as well as local models for bole and
foliage biomass in Douglas-fir but its performance was inter-
mediate between FIA-PNW estimates and locally refitted
model for other species component combinations. The results
from leave-one out cross validation showed that the inverse
regression produced higher RMSE compared to the locally
refitted regional models. 

Summary and Conclusions 
We evaluated the performance of regional vol-
ume and component biomass equations in
terms of bias and RMSE using data from
destructively sampled Douglas-fir and lodge-
pole pine trees. Three adjustment methods
based on ordinary least squares regression
were applied. The regional volume equations
performed fairly well and produced similar
results as the locally refitted volume equations
of the same form. 

The regional component biomass esti-
mates were highly biased, producing up to
360% RMSE for bark biomass for Douglas-fir.
We would like to make a cautionary note
because our calculation of observed bark bio-
mass is based on a 3 cm – 5 cm long sample
obtained from the disks at every 5.18 m inter-
vals. The density of these bark samples is

based on their volume calculated as rectangles. This could
have been an erroneous assumption since the bark sample
lacks regular shape. To check this, we calculated total bark
volume by subtracting inside-bark CVTS from outside-bark
CVTS and used the compiled sets of density factors (same as
the ones used by the FIA-PNW). The total bark biomass esti-
mates obtained from this approach was similar to what we
had obtained before. A better way to estimate bark volume

Fig. 5. Trend in RMSE percent in estimating component biomass from regional models adjusted with OLS-RTO method calculated from
randomly selected m lodgepole pine trees. The process of selecting m trees was repeated 5000 times. The RMSE percent from unad-
justed regional equations were 35.8%, 78.1%, 68.1%, and 85.4% for bole, bark, foliage, and branch biomass respectively.

Table 5. Evaluation statistics from leave one out cross validation in compo-
nent biomass estimates obtained from OLS-WI adjustment of the regional
component biomass equations. Values of a and b are the average of a and b
values obtained from the leave-one-cross validation.

Bias Bias RMSE RMSE 
Species Variable a b (kg) Percent (kg) Percent

Douglas-fir
Bole 33.3182 1.0863 -2.98 -0.16 230.22 12.01
Bark 19.9250 0.2525 -0.69 -0.65 35.26 33.36
Foliage 14.6011 0.5892 -0.20 -0.35 21.80 38.33
Branch 20.9354 1.1498 -0.83 -0.37 80.86 36.48

Lodgepole pine
Bole 19.7394 1.1055 -1.45 -0.66 74.58 33.87
Bark 1.3806 0.6698 -0.18 -1.51 8.97 74.69
Foliage 3.8887 1.2446 -0.26 -1.47 11.16 63.16
Branch 9.3362 1.5354 -0.74 -1.56 36.12 75.88
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would be to use a water displacement method but that is both
time-consuming and expensive compared to the method we
used.

All the adjustment methods used in this study improved
the performance of regional equations for the calibration
data. The calibration of equations for Douglas-fir did not
reduce the RMSE substantially. Based on the leave-one-out
cross validation, the RMSEs in component biomass estima-
tion were similar for the adjustments from a correction factor
based on OLS-RTO and OLS-WI approach except for Dou-
glas-fir foliage and bark biomass where the OLS-WI per-
formed better than the OLS-RTO. The inverse approach per-
formed somewhat poorly compared to these approaches. 

The OLS-RTO correction factor can be calculated using
only one tree with desired characteristics such as a dominant
tree in the stand or one with maximum DBH and therefore
might be considered better than the OLS-WI and inverse
approach. The choice should be governed by which compo-
nent model one desires to calibrate. We calculated for such
correction factor, assuming that our Douglas-fir data came
from a single stand and represent the population of interest,
and found it useful to use the tree with maximum DBH to cal-
ibrate regional CVTS and bark biomass equations, and the
dominant tree to calibrate bole, foliage, and branch biomass
(Table 7). The reason behind this could be that there is more
volume and bark biomass in the lower sections of the trees

which are more affected by DBH than height,
while on the other hand, biomass in branch
and foliage is more dependent on tree height.
For our lodgepole pine, however, the tree with
the largest DBH was also the dominant tree,
and the performance of OLS-RTO calibration
was poor when the tree with the second
largest DBH was used. Selecting trees of such
characteristics to calibrate regional models
was more useful than randomly selecting one
tree. The decreasing trend in RMSE by using
randomly selected  trees slowed down signifi-
cantly after five trees. 

Accurate estimation of volume and bio-
mass is required to quantify the role of forest
management in carbon sequestration and cli-
mate change mitigation. However, the differ-
ences in scale of model development and
application can result in biased estimates of
volume and biomass. On the other hand,

developing site- and species-specific volume and biomass
models is not feasible, given the high cost and destructive
nature of data collection. In this scenario, the use of calibra-
tion equations developed from limited data can serve as a bal-
ance between cost and accuracy. Sometimes the calibrated
models may perform even better than locally fitted models
using limited sample size (e.g., de-Miguel et al. 2014).
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